
Polyspace® Code Prover™ Server™
User’s Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Server™ User's Guide
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 10.0 (R2019a)
September 2019 Online Only Revised for Version 10.1 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Polyspace Analysis on Server After Code Submission
1

Prepare Scripts for Polyspace Analysis 1-2
Options Related to Source Code and Target 1-3
Options Related to Polyspace Analysis 1-5

Configure Polyspace Analysis Options in User Interface and
Generate Scripts . 1-7

Prerequisites . 1-9
Generate Scripts from Configuration 1-9
Run Analysis with Generated Scripts 1-10

Sample Scripts for Polyspace Analysis with Jenkins 1-13
Extending Sample Scripts to Your Development Process 1-14
Prerequisites . 1-15
Set Up Polyspace Plugin in Jenkins . 1-15
Script to Run Bug Finder, Upload Results and Send Common
Notification . 1-20

Script to Run Bug Finder, Upload Results and Send Personalized
Notification . 1-22

Use Existing Software Development Specifications for
Polyspace Analysis

2
Create Polyspace Analysis Configuration from Build Command

. 2-2

polyspace-configure Source Files Selection Syntax 2-5

iii

Contents

Modularize Polyspace Analysis by Using Build Command 2-8
Build Source Code . 2-8
Create One Polyspace Options File for Full Build 2-10
Create Options File for Specific Binary in Build Command . . 2-11
Create One Options File Per Binary Created in Build Command

. 2-12

Create Polyspace Analysis Configuration from AUTOSAR
Specifications . 2-15
Benefits of Polyspace for AUTOSAR 2-15
Run Polyspace on AUTOSAR Code . 2-16
Upload Results to Polyspace Access Web Interface 2-17

Offload Polyspace Analysis to Remote Servers from
Desktop

3
Send Polyspace Analysis from Desktop to Remote Servers . . . 3-2

Client-Server Workflow for Running Analysis 3-2
Prerequisites . 3-4
Offload Analysis in Polyspace User Interface 3-4

Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts . 3-7

Client-Server Workflow for Running Analysis 3-7
Prerequisites . 3-8
Run Remote Analysis . 3-8
Manage Remote Analysis . 3-10
Sample Scripts for Remote Analysis 3-12

iv Contents

Run Polyspace Analysis on Server with MATLAB
Scripts

4
Integrate Polyspace Server Products with MATLAB and

Simulink . 4-2
Integrate Polyspace with MATLAB Installation from Same

Release . 4-2
Integrate Polyspace with MATLAB Installation from Different

Release . 4-3
Check Integration Between MATLAB and Polyspace 4-3
Run Polyspace Server Products with MATLAB Scripts 4-4

Configure Target and Compiler Options
5

Specify Target Environment and Compiler Behavior 5-2
Extract Options from Build Command 5-3
Specify Options Explicitly . 5-4

C/C++ Language Standard Used in Polyspace Analysis 5-7
Supported Language Standards . 5-7
Default Language Standard . 5-7

C11 Language Elements Supported in Polyspace 5-10

C++11 Language Elements Supported in Polyspace 5-12

C++14 Language Elements Supported in Polyspace 5-17

Provide Standard Library Headers for Polyspace Analysis . . . 5-21

Requirements for Project Creation from Build Systems 5-23
Compiler Requirements . 5-23
Build Command Requirements . 5-24

Supported Keil or IAR Language Extensions 5-26
Special Function Register Data Type 5-26
Keywords Removed During Preprocessing 5-27

v

Remove or Replace Keywords Before Compilation 5-28
Remove Unrecognized Keywords . 5-28
Remove Unrecognized Function Attributes 5-30

Gather Compilation Options Efficiently 5-32

Configure Inputs and Stubbing Options
6

Specify External Constraints . 6-2
Create Constraint Template . 6-2
Create Constraint Template from Code Prover Analysis Results

. 6-4
Update Existing Template . 6-5
Specify Constraints in Code . 6-6

External Constraints for Polyspace Analysis 6-8
Constraint Specification Limitations 6-15

Constrain Global Variable Range . 6-17
User Interface (Desktop Products Only) 6-17
Command Line . 6-18

Constrain Function Inputs . 6-20
User Interface (Desktop Products Only) 6-20
Command Line . 6-21

XML File Format for Constraints . 6-23
Syntax Description — XML Elements 6-23
Valid Modes and Default Values . 6-28

Configure Multitasking Analysis
7

Analyze Multitasking Programs in Polyspace 7-2
Configure Analysis . 7-3
Review Analysis Results . 7-4

vi Contents

Auto-Detection of Thread Creation and Critical Section in
Polyspace . 7-6

Multitasking Routines that Polyspace Can Detect 7-6
Example of Automatic Thread Detection 7-8
Naming Convention for Automatically Detected Threads 7-12
Limitations of Automatic Thread Detection 7-13

Configuring Polyspace Multitasking Analysis Manually 7-19
Specify Options for Multitasking Analysis 7-19
Adapt Code for Code Prover Multitasking Analysis 7-20

Protections for Shared Variables in Multitasking Code 7-24
Detect Unprotected Access . 7-24
Protect Using Critical Sections . 7-25
Protect Using Temporally Exclusive Tasks 7-27
Protect Using Priorities . 7-27
Protect By Disabling Interrupts . 7-28

Define Atomic Operations in Multitasking Code 7-29
Nonatomic Operations . 7-29
What Polyspace Considers as Nonatomic 7-29
Define Specific Operations as Atomic 7-30

Define Preemptable Interrupts and Nonpreemptable Tasks . 7-33
Emulating Task Priorities . 7-33
Examples of Task Priorities . 7-33
Further Explorations . 7-35

Define Critical Sections with Functions That Take Arguments
. 7-36

Polyspace Assumption on Functions Defining Critical Sections
. 7-36

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments . 7-37

vii

Configure Coding Rules Checking and Code Metrics
Computation

8
Check for Coding Standard Violations . 8-2

Configure Coding Rules Checking . 8-2
Review Coding Rule Violations . 8-7
Generate Reports . 8-9

Avoid Violations of MISRA C 2012 Rules 8.x 8-10

Software Quality Objective Subsets (C:2004) 8-14
Rules in SQO-Subset1 . 8-14
Rules in SQO-Subset2 . 8-15

Software Quality Objective Subsets (AC AGC) 8-20
Rules in SQO-Subset1 . 8-20
Rules in SQO-Subset2 . 8-21

Software Quality Objective Subsets (C:2012) 8-24
Guidelines in SQO-Subset1 . 8-24
Guidelines in SQO-Subset2 . 8-25

Software Quality Objective Subsets (C++) 8-29
SQO Subset 1 – Direct Impact on Selectivity 8-29
SQO Subset 2 – Indirect Impact on Selectivity 8-31

Coding Rule Subsets Checked Early in Analysis 8-36
MISRA C: 2004 and MISRA AC AGC Rules 8-36
MISRA C: 2012 Rules . 8-46

Create Custom Coding Rules . 8-56
User Interface (Desktop Products Only) 8-56
Command Line . 8-57

Compute Code Complexity Metrics . 8-59
Impose Limits on Metrics (Desktop Products Only) 8-59
Impose Limits on Metrics (Server and Access products) 8-61

HIS Code Complexity Metrics . 8-62
Project . 8-62
File . 8-62

viii Contents

Function . 8-62

Configure Verification of Modules or Libraries
9

Provide Context for C Code Verification 9-2
Control Variable Range . 9-2
Control Function Call Sequence . 9-2
Control Stubbing Behavior . 9-3

Provide Context for C++ Code Verification 9-4
Control Variable Range . 9-4
Control Function Call Sequence . 9-4

Verify C Application Without main Function 9-6
Generate main Function . 9-6
Manually Write main Function . 9-6

Verify C++ Classes . 9-10
Verification of Classes . 9-10
Methods and Class Specifics . 9-12

Configure Comment Import from Previous Results
10

Import Review Information from Previous Polyspace Analysis
. 10-2

Automatic Import from Last Analysis 10-2
Import from Another Analysis Result 10-3
Import Algorithm . 10-4
View Imported Review Information That Does Not Apply . . . 10-4

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results . 10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result . 10-7

ix

Troubleshooting in Polyspace Code Prover Server
11

Read Error Information When Polyspace Analysis Stops 11-3

Troubleshoot Compilation and Linking Errors 11-4
Issue . 11-4
Possible Cause: Deviations from ANSI C99 Standard 11-4
Possible Cause: Linking Errors . 11-5
Possible Cause: Conflicts with Polyspace Function Stubs 11-6

Reduce Memory Usage and Time Taken by Polyspace Analysis
. 11-8

Issue . 11-8
Possible Cause: Anti-Virus Software 11-8
Possible Cause: Large and Complex Application 11-9
Possible Cause: Too Many Entry Points for Multitasking

Applications . 11-11

Contact Technical Support . 11-14
Provide System Information . 11-14
Provide Information About the Issue 11-14

Polyspace Cannot Find the Server . 11-17
Message . 11-17
Possible Cause . 11-17
Solution . 11-17

Job Manager Cannot Write to Database 11-18
Message . 11-18
Possible Cause . 11-18
Workaround . 11-18

Compiler Not Supported for Project Creation from Build
Systems . 11-20

Issue . 11-20
Cause . 11-20
Solution . 11-20

Slow Build Process When Polyspace Traces the Build 11-30
Issue . 11-30
Cause . 11-30

x Contents

Solution . 11-30

Check if Polyspace Supports Build Scripts 11-31
Issue . 11-31
Possible Cause . 11-31
Solution . 11-31

Troubleshooting Project Creation from MinGW Build 11-33
Issue . 11-33
Cause . 11-33
Solution . 11-33

Troubleshooting Project Creation from Visual Studio Build
. 11-34

Error Processing Macro with Semicolon in Build System . . 11-35
Issue . 11-35
Cause . 11-35
Solution . 11-35

Could Not Find Include File . 11-36
Issue . 11-36
Cause . 11-36
Solution . 11-36

Conflicting Universal Unique Identifiers (UUIDs) 11-38
Issue . 11-38
Solution . 11-38

Data Type Not Recognized . 11-40
Issue . 11-40
Cause . 11-40
Solution . 11-40

Undefined Identifier Error . 11-42
Issue . 11-42
Possible Cause: Missing Files . 11-42
Possible Cause: Unrecognized Keyword 11-42
Possible Cause: Declaration Embedded in #ifdef Statements

. 11-43
Possible Cause: Project Created from Non-Debug Build . . . 11-44

xi

Unknown Function Prototype Error . 11-46
Issue . 11-46
Cause . 11-46
Solution . 11-46

Error Related to #error Directive . 11-48
Issue . 11-48
Cause . 11-48
Solution . 11-48

Large Object Error . 11-50
Issue . 11-50
Cause . 11-50
Solution . 11-50

Errors Related to Generic Compiler 11-53
Issue . 11-53
Cause . 11-53
Solution . 11-53

Errors Related to Keil or IAR Compiler 11-55
Missing Identifiers . 11-55

Errors Related to Diab Compiler . 11-56
Issue . 11-56
Cause . 11-56
Solution . 11-56

Errors Related to Green Hills Compiler 11-59
Issue . 11-59
Cause . 11-59
Solution . 11-60

Errors Related to TASKING Compiler 11-61
Issue . 11-61
Cause . 11-61
Solution . 11-62

Errors from In-Class Initialization (C++) 11-63

Errors from Double Declarations of Standard Template Library
Functions (C++) . 11-64

xii Contents

Errors Related to GNU Compiler . 11-65
Issue . 11-65
Cause . 11-65
Solution . 11-65

Errors Related to Visual Compilers . 11-66
Import Folder . 11-66
pragma Pack . 11-66
C++/CLI . 11-67

Conflicting Declarations in Different Translation Units . . . 11-68
Issue . 11-68
Possible Cause: Variable Declaration and Definition Mismatch

. 11-69
Possible Cause: Function Declaration and Definition Mismatch

. 11-70
Possible Cause: Conflicts from Unrelated Declarations 11-71
Possible Cause: Macro-dependent Definitions 11-72
Possible Cause: Keyword Redefined as Macro 11-73
Possible Cause: Differences in Structure Packing 11-74

Errors from Conflicts with Polyspace Header Files 11-75
Issue . 11-75
Cause . 11-75
Solution . 11-75

C++ Standard Template Library Stubbing Errors 11-77
Issue . 11-77
Cause . 11-77
Solution . 11-77

Lib C Stubbing Errors . 11-78
Extern C Functions . 11-78
Functional Limitations on Some Stubbed Standard ANSI

Functions . 11-79

Errors from Using Namespace std Without Prefix 11-80
Issue . 11-80
Cause . 11-80
Solution . 11-80

Errors from Assertion or Memory Allocation Functions . . . 11-81
Issue . 11-81

xiii

Cause . 11-81
Solution . 11-81

Error from Special Characters . 11-82
Issue . 11-82
Cause . 11-82
Workaround . 11-82

Error or Slow Runs from Disk Defragmentation and Anti-virus
Software . 11-83

Issue . 11-83
Possible Cause . 11-83
Solution . 11-83

SQLite I/O Error . 11-85
Issue . 11-85
Cause . 11-85
Solution . 11-85

License Error –4,0 . 11-86
Issue . 11-86
Possible Cause: Another Polyspace Instance Running 11-86
Possible Cause: Prior Polyspace Run in Simulink or MATLAB

Coder . 11-86

xiv Contents

Polyspace Analysis on Server After
Code Submission

1

Prepare Scripts for Polyspace Analysis
When you run Polyspace as part of your software development processes, your analysis
scripts must be preconfigured for new code submissions. For instance, new source files
must be automatically included in the Polyspace analysis. To keep the analysis
configuration updated with new submissions, you can leverage existing artifacts such as
your build command (makefiles) and create your analysis configuration on the fly when
new submissions occur.

The analysis configuration consists of two parts:

• Options related to the source code and target, such as data type sizes, macro
definitions, cyclic tasks and interrupts, and so on.

• Options related to the analysis, such as checkers, code verification assumptions, and
so on.

1 Polyspace Analysis on Server After Code Submission

1-2

Options Related to Source Code and Target
The most common options related to the source code and target are:

• -sources-list-file: Specify a text file containing one source file per line.
• -I: Specify the folders containing included header files.
• Compiler (-compiler): Specify the compiler used for building your source code.
• Target processor type (-target): Specify sizes of data types and endianness

by selecting a predefined target processor.
• Preprocessor definitions (-D): Replace unrecognized code for the purposes of

Polyspace analysis. You typically use this option if the analysis shows compilation
errors from compiler-specific keywords and macros.

• Constraint setup (-data-range-specifications): Define external
constraints on global variables and function interfaces. The option is typically useful
for a more precise Code Prover analysis.

For the full list of options, see:

• “Analysis Options” (Polyspace Bug Finder Server)
• “Analysis Options”

Extract Options from Build Command

In a continuous integration workflow, you typically do not specify the option arguments
explicitly. Your build command contains the specifications for sources, compiler, macro
definitions and so on. Run the polyspace-configure command to extract these
specifications from your build command and create an options file. For instance, if you
use make to build your source code, run the analysis as follows:

polyspace-configure -output-options-file polyspace_opts make
polyspace-bug-finder-server -options-file polyspace_opts
polyspace-code-prover-server -options-file polyspace_opts

The first command extracts source and target specifications by executing the instructions
in the makefile and creates an analysis options file. The second and third commands runs
a Bug Finder and Code Prover analysis with the options file. See “Create Polyspace
Analysis Configuration from Build Command” on page 2-2.

 Prepare Scripts for Polyspace Analysis

1-3

Specify Options Explicitly in Options File

If you cannot extract the options from your build command, specify the options explicitly.
You can create some of the option arguments on the fly from new submissions. For
instance, the argument for the option -sources-list-file is a text file that lists the
sources. You can update this text file based on any new source file added to the source
code repository.

If you have to specify the target and compiler options explicitly, you might not get all the
options right in the first run. To find the right combination of options:

1 Specify the options Compiler (-compiler) and Target processor type (-
target) in your options file.

2 Compile the code with your compiler and fix all compilation errors. Then, run only the
compilation part of the Polyspace analysis.

• In Bug Finder, disable all checkers. Specify -checkers none in the options file.
See Find defects (-checkers).

• In Code Prover, stop the analysis after compilation. Specify -to compile in the
options file. See Verification level (-to).

If you run into compilation errors, you might have to work around the errors with
Polyspace options. For instance, if you see a compilation error because the macro
_WIN32 is defined with a compiler option but Polyspace considers the macro as
undefined by default, emulate your compiler option with the Polyspace option -D
_WIN32. See “Target and Compiler”, “Macros” and “Environment Settings” for the
target and compiler options.

Once you fix all compilation errors with Polyspace analysis options, your options file is
prepared with the right set of Polyspace options for the analysis.

If you have an installation of the desktop products, Polyspace Bug Finder™ and/or
Polyspace Code Prover, you can perform the trial runs in the user interface of the desktop
products. You can then generate an options file from the configuration defined in the user
interface. The user interface provides various features such as:

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,

1 Polyspace Analysis on Server After Code Submission

1-4

• Context-sensitive help for options,

See “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on
page 1-7.

Options Related to Polyspace Analysis
Some options related to the Polyspace analysis are:

Bug Finder

• Find defects (-checkers): Specify checkers to enable for the Bug Finder
analysis.

• Check MISRA C:2012 (-misra3) and other options related to external standards:
Specify an external standard and a predefined subset of that standard.

• Set checkers by file (-checkers-selection-file): Specify a custom
subset of rules from external standards.

• Bug Finder and Code Prover report (-report-template): Specify that a
PDF, Word or HTML report must be generated along with the analysis results and
specify a template for the report.

Code Prover

• Overflow mode for signed integer (-signed-integer-overflows):
Specify the behavior following an overflow: stop analysis or continue with wrap-
around.

• Detect stack pointer dereference outside scope (-detect-pointer-
escape): Specify if the analysis must find cases where a function returns a pointer to
one of its local variables.

• Detect uncalled functions (-uncalled-function-checks): Specify if the
analysis must flag functions that are not called directly or indirectly from main or
another entry point function.

• Bug Finder and Code Prover report (-report-template): Specify that a
PDF, Word or HTML report must be generated along with the analysis results and
specify a template for the report.

The checkers and other options related to the Polyspace analysis can be applicable to
more than one project. To maintain uniform standards across projects, you can reuse this

 Prepare Scripts for Polyspace Analysis

1-5

subset of analysis options. When running the analysis, specify two options files, one
containing the options specific to the current project and the other containing the
reusable options. You can extract the first options file from your build command but
explicitly create the second options file.

For instance, in this example, the polyspace-bug-finder-server command uses two
options files: compile_opts generated from a makefile and runbf_opts created
manually. All reusable options can be specified in runbf_opts.

polyspace-configure -output-options-file compile_opts make
polyspace-bug-finder-server -options-file compile_opts -option-file runbf_opts
polyspace-code-prover-server -options-file compile_opts -option-file runcp_opts

If the same option appears in two options files, the last instance of the option is
considered. In the preceding example, if an option occurs in both compile_opts and
runbf_opts, the occurrence in runbf_opts is considered. If you want to override
previous occurrences of an option, use an additional options file with your overrides.
Append this options file to the end of the analysis command.

See Also
polyspace-code-prover-server | polyspace-configure

More About
• “Run Polyspace Code Prover on Server and Upload Results to Web Interface”
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on

page 1-7

1 Polyspace Analysis on Server After Code Submission

1-6

Configure Polyspace Analysis Options in User Interface
and Generate Scripts

In this section...
“Prerequisites” on page 1-9
“Generate Scripts from Configuration” on page 1-9
“Run Analysis with Generated Scripts” on page 1-10

If you have an installation of the desktop products, Polyspace Bug Finder and/or
Polyspace Code Prover, you can configure your project in the user interface of the
desktop products. You can then generate a script or an options file from the configuration
defined in the user interface and use the script or options file for automated runs with the
desktop or server products.

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-7

Unless you create a Polyspace project from existing specifications such as a build
command, when setting up the project, you might have to perform a few trial runs first. In
these trial runs, if you run into compilation errors or unchecked code, you might have to
modify your analysis configuration. It is easier performing this initial setup in the user
interface of the desktop products. The user interface provides various features such as:

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,
• Context-sensitive help for options.

1 Polyspace Analysis on Server After Code Submission

1-8

Prerequisites
You must have at least one license of Polyspace Bug Finder and/or Polyspace Code Prover
to open the Polyspace user interface and configure the options.

After generating the scripts, you can run the analysis using either the desktop products
(Polyspace Bug Finder and Polyspace Code Prover) or the server products (Polyspace Bug
Finder Server and/or Polyspace Code Prover Server).

Generate Scripts from Configuration
This example shows how to generate a script from a Bug Finder configuration. The same
steps apply to a Code Prover configuration.

1 Add source files to a new project in the Polyspace user interface.

Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the
Polyspace installation folder, for instance, C:\Program Files\Polyspace
\R2019a. Open the Polyspace user interface using the polyspace executable and
create a new project.

See “Add Source Files for Analysis in Polyspace User Interface” (Polyspace Code
Prover).

2 Specify the analysis options on the Configuration pane in the Polyspace project. To
open this pane, in the project browser, click the configuration node in your Polyspace
project.

See “Specify Polyspace Analysis Options” (Polyspace Code Prover).
3 Run the analysis. Based on compilation errors and analysis results, modify options as

needed.

See “Run Polyspace Analysis on Desktop” (Polyspace Code Prover).
4 Once your analysis options are set, generate a script from the project (.psprj file).

To generate a script from the demo project, Bug_Finder_Example:

a Load the project. Select Help > Examples > Bug_Finder_Example.psprj. A
copy of this project is loaded in the Examples folder in your default workspace.

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-9

To find the project location, place your cursor on the project name in the Project
Browser pane.

b Navigate to the project location and enter:

polyspace -generate-launching-script-for Bug_Finder_Example.psprj -bug-finder

To generate Code Prover scripts, use the same command without the -bug-
finder option.

If a project has more than one module (with more than one configuration in each
module), the options from the currently active configuration in the currently
active module will be extracted in the script.

These files are generated for scripting the analysis:

• source_command.txt: Lists source files. This file can be provided as argument to the
-sources-list-file option.

• options_command.txt: Lists analysis options. This file can be provided as argument
to the -options-file option.

• launchingCommand.bat or launchingCommand.sh, depending on your operating
system. The file uses the polyspace-bug-finder or polyspace-code-prover
executable to run the analysis. The analysis runs on the source files listed in
source_command.txt and uses the options listed in options_command.txt.

Run Analysis with Generated Scripts
After configuring your analysis and generating scripts, you can use the generated files to
automate the subsequent analysis. You can automate the subsequent analysis using either
the desktop or server products.

To automate a Bug Finder analysis with the desktop product, Polyspace Bug Finder:

1 Generate scripts as mentioned in the previous section.
2 Execute the script launchingCommand.bat or launchingCommand.sh at periodic

intervals or based on predefined triggers.

To automate a Bug Finder analysis with the server product, Polyspace Bug Finder Server:

1 Polyspace Analysis on Server After Code Submission

1-10

1 After specifying options in the user interface and before generating scripts, move the
Polyspace project (.psprj file) to the server where the server product is running.

2 Generate scripts as mentioned in the previous section.

The scripts refer to the server product executable instead of the desktop products.
3 Execute the script launchingCommand.bat or launchingCommand.sh at periodic

intervals or based on predefined triggers.

Alternatively, you can modify the script generated for the desktop product so that the
server product is executed. The script refers to the path to a desktop product executable,
for instance:

"C:\Program Files\Polyspace\R2019a\polyspace\bin\polyspace-code-prover.exe"

Replace this with the path to a server product executable, for instance:

"C:\Program Files\Polyspace Server\R2019a\polyspace\bin\
 polyspace-code-prover-server.exe"

Sometimes, you might want to override some of the options in the options file. For
instance, the option to specify a results folder is hardcoded in the script. You can remove
this option or override it when launching the scripts:

launchingCommand -results-dir newResultsFolder

where newResultsFolder is the new results folder. This folder can even be dynamically
generated for each run.

If you override multiple options in options_command.txt, you can save the overrides in
a second options file. Modify the script launchingCommand.bat or
launchingCommand.sh so that both options files are used. The script uses the option -
options-file to use an options file, for instance:

-options-file options_command.txt

If you place your option overrides in a second options file overrides.txt, modify the
script to append a second -options-file option:

-options-file options_command.txt -options-file overrides.txt

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-11

See Also
-generate-launching-script-for

Related Examples
• “Run Polyspace Code Prover on Server and Upload Results to Web Interface”
• “Prepare Scripts for Polyspace Analysis” on page 1-2

1 Polyspace Analysis on Server After Code Submission

1-12

Sample Scripts for Polyspace Analysis with Jenkins
In a continuous integration process, developers submit code to a shared repository. An
automated build system using a tool such as Jenkins builds and tests each submission at
regular intervals or based on predefined triggers and integrates the code. You can run a
Polyspace analysis as part of this process.

This topic provides sample Shell scripts that run a Polyspace analysis using Polyspace
Bug Finder Server and upload the results for review in the Polyspace Access web
interface. The script also sends e-mail notifications to potential reviewers. Notified
reviewers can login to the Polyspace Access web interface (if they have a Polyspace Bug
Finder Access™ license) and review the results.

 Sample Scripts for Polyspace Analysis with Jenkins

1-13

Extending Sample Scripts to Your Development Process
The scripts are written for a specific development toolchain but can be easily extended to
the processes used in your project, team or organization.

In particular, the scripts:

• Run on Linux® only.

The scripts use some Linux-specific commands such as export. However, these
commands are not an integral part of the Polyspace workflow. If you write Windows®

scripts (.bat files), use the equivalent Windows commands instead.
• Work only with Jenkins after you install the Polyspace plugin.

The scripts are designed for the Jenkins plugin in these two ways:

• The scripts uses helper functions $ps_helper and $ps_helper_access for
simpler scripting. The helper functions export Polyspace results for e-mail
attachments and use command-line utilities to filter the results.

These helper functions are available only with the Jenkins plugin. However, the
underlying commands come with a Polyspace Bug Finder Server installation. On
build automation tools other than Jenkins, you can create these helper functions
using the polyspace-report-generator command or polyspace-access
command (with the -export option). See “Send Email Notifications with Polyspace
Code Prover Results”.

• The scripts create text files for e-mail attachments and mail subjects and bodies for
personalized e-mails. If you install the Polyspace plugin in Jenkins, an extension of
an e-mail plugin is available for use in your Jenkins projects. The e-mail plugin
allows you to easily send the personalized e-mails with the previously created
subjects, bodies and attachments. Without the Polyspace plugin, you have to find
an alternative way to send the e-mails.

• Run a Bug Finder analysis.

The scripts run Bug Finder on the demo example Bug_Finder_Example. If you install
the product Polyspace Bug Finder Server, the folder containing the demo example is
polyspaceserverroot/polyspace/examples/cxx/Bug_Finder_Example. Here,
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

1 Polyspace Analysis on Server After Code Submission

1-14

You can easily adapt the script to run Code Prover. Replace polyspace-bug-
finder-server with polyspace-code-prover-server. You can use the demo
example Code_Prover_Example specifically meant for Code Prover.

Prerequisites
To run a Bug Finder analysis on a server and review the results in the Polyspace Access
web interface, you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Bug Finder Server
product.

• To upload results, you must set up the components required to host the web interface
of Polyspace Access.

• To view the uploaded results, you (and each developer reviewing the results) must
have one Polyspace Bug Finder Access license.

See “Install Polyspace Server and Access Products” (Polyspace Bug Finder Server).

To install the Polyspace plugin, in the Jenkins interface, select Manage Jenkins on the
left. Select Manage Plugin. Search for the Polyspace plugin and then download and
install the plugin.

Set Up Polyspace Plugin in Jenkins
The following steps outline how to set up a Polyspace analysis in Jenkins after installing
the Polyspace plugin. Note that the steps refer to Jenkins version 2.150.1. The steps in
your Jenkins version and your Polyspace plugin installation might be slightly different.

If you use a different build automation tool, you can perform similar setup steps.

Specify Paths to Polyspace Commands and Server Details for Polyspace Access
Web Interface

Specify the full paths of the folder containing the Polyspace commands and host name
and port number of the server hosting the Polyspace Access web interface. After you

 Sample Scripts for Polyspace Analysis with Jenkins

1-15

specify the paths, in your scripts, you do not have to use the full paths to the commands
or the server details for uploading results.

1 In the Jenkins interface, select Manage Jenkins on the left. Select Configure
System.

2 In the Polyspace section, specify the following:

• Paths to Polyspace commands.

The path refers to polyspaceserverroot/polyspace/bin, where
polyspaceserverroot is the installation folder for Polyspace Server products,
for instance, /usr/local/Polyspace Server/R2019a/.

• The host name, port number and protocol (http or https) used by the server
hosting the Polyspace Access web interface.

1 Polyspace Analysis on Server After Code Submission

1-16

The Name field allows you to define a convenient shorthand that you use later in
Jenkins projects.

3 In the E-mail Notification section, specify your company's SMTP server (and other
details needed for sending e-mails).

 Sample Scripts for Polyspace Analysis with Jenkins

1-17

Create Jenkins Project for Running Polyspace

When you create a Jenkins project (for instance, a Freestyle project), you can refer to the
Polyspace paths by the global shorthands that you defined earlier.

To create a Jenkins project for running Polyspace:

1 In the Jenkins interface, select New Item on the left. Select Freestyle Project.
2 In the Build Environment section of the project, enter the two shorthand names you

defined earlier:

• The name for the path to the folder containing the Polyspace commands
• The name for the details of the server hosting the Polyspace Access web interface.

Also, enter a login and password that can be used to upload to the Polyspace Access
web interface. The login and password must be associated with a Polyspace Bug
Finder Access license.

1 Polyspace Analysis on Server After Code Submission

1-18

3 In the Build section of the project, you can enter scripts that use the Polyspace
commands and details of the server hosting the Polyspace Access web interface.

 Sample Scripts for Polyspace Analysis with Jenkins

1-19

The scripts run a Polyspace analysis and upload results to the Polyspace Access web
interface.

4 In the Post-build Actions section of the project, configure e-mail addresses and
attachments to be sent after the analysis.

Script to Run Bug Finder, Upload Results and Send Common
Notification
This script runs a Bug Finder analysis, uploads the results and exports defects with high
impact for a common notification email to all recipients.

The script assumes that the current folder contains a folder sources with .c files.
Otherwise modify the line gcc -c sources/*.c with the full path to the sources.

1 Polyspace Analysis on Server After Code Submission

1-20

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export PARENT_PROJECT=/public/BugFinderExample_PRS_01

==
Trace build command and create an options file

build_cmd="gcc -c sources/*.c"
polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

==
Upload results to Polyspace Access web interface

$ps_helper_access -create-project $PARENT_PROJECT
$ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG

==
Export results filtered for defects with "High" impact

$ps_helper_access \
 -export $PARENT_PROJECT/$PROG \
 -output Results_All.tsv \
 -defects High

==
Finalize Jenkins status

exit 0

 Sample Scripts for Polyspace Analysis with Jenkins

1-21

After the script is run, you can create a post-build action to send an e-mail to all
recipients with the exported file Results_All.tsv.

In this script, $ps_helper_access is a shorthand for the polyspace-access
command with the options specifying host name, port, login and encrypted password
included. The other polyspace-access options are explicitly written in the script.

Script to Run Bug Finder, Upload Results and Send
Personalized Notification
This script runs the previous Bug Finder analysis and uploads the results. However, the
script differs from the previous script in these ways:

• The script uses a run_command function that prints a message when running a
command. The function helps determine from the console output which part of the
script is running.

1 Polyspace Analysis on Server After Code Submission

1-22

• When exporting the results, the script creates a separate results file for different
owners.

• A master file Results_All.tsv contains all results. This file is sent in e-mail
attachment to a manager. The manager email is configured in the post-build step.

If the file contains more than 10 defects, the build status is considered as a failure.
The script sends a status UNSTABLE in the e-mail notification.

• The results file Results_Users_userA.tsv exported for userA contains defects
from the group Programming and with impact High.

This result file is sent in e-mail attachment to userA.
• The results file Results_Users_userB.tsv exported for userB contains defects

from the function bug_memstdlib().

This result file is sent in e-mail attachment to userB.
• A separate mail subject is created for the manager in the file

mailsubject_manager.txt and for users userA and userB in the files
mailsubject_user_userA.txt and mailsubject_user_userB.txt respectively.

A mail body is created for the email to the manager in the file
mailbody_manager.txt.

The script:

• Assumes that the current folder contains a folder sources with .c files.

Otherwise, modify the line gcc -c sources/*.c with the full path to the sources.
• Assumes users named userA and userB. In particular, the email addresses

userA@companyname.com and userB@companyname.com (determined from the
user name and SMTP server configured earlier) must be real e-mail addresses.

Replace the names with real user names.

 Sample Scripts for Polyspace Analysis with Jenkins

1-23

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export REPORT=Results_List.tsv

==
Define function to print message while running command
run_command()
{
$1 is a message
$2 $3 ... is the command to dump and to run
message=$1
shift
cat >> mailbody_manager.txt << EOF
$(date): $message

EOF
"$@"
}

==
Initialize mail body
cat > mailbody_manager.txt << EOF
Dear Manager(s)

Here is the report of the Jenkins Job ${JOB_NAME} #${BUILD_NUMBER}
It contains all Red Defect found in Bug Finder Example project

EOF

==
Trace build command and create options file

build_cmd="gcc -c sources/*.c"
run_command "Tracing build command", \
 polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

1 Polyspace Analysis on Server After Code Submission

1-24

==
Run Bug Finder on the options file

run_command "Running Bug finder" \
 polyspace-bug-finder-server -options-file $PROG.psopts\
 -results-dir $RESULT

==
Upload results to Polyspace Access web interface

run_command "Creating Project $PARENT_PROJECT" \
 $ps_helper_access -create-project $PARENT_PROJECT

run_command "Uploading on $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG \
 -output upload.output
PROJECT_RUNID=$($ps_helper prs_print_runid upload.output)
PROJECT_URL=$($ps_helper prs_print_projecturl upload.output $POLYSPACE_ACCESS_URL)

==
Export report

run_command "Exporting report from $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -export $PROJECT_RUNID \
 -output $REPORT \
 -defects High

==
Filter Reports

run_command "Filtering reports for defects" \
 $ps_helper report_filter \
 $REPORT \
 Results_All.tsv \
 Family Defect \

 Sample Scripts for Polyspace Analysis with Jenkins

1-25

==
Filter Reports for userA and userB

run_command "Filtering Reports for userA based on Group and Information" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"
run_command "Filtering Reports for userB based on Function" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userB \
 Function "bug_memstdlib()"

==
Update Jenkins status
Jenkins build status is unstable when there are more than 10 Defects

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10)

==
Update mail body and mail subject

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)
NB_FINDINGS_USERA=$($ps_helper report_count_findings Results_Users_userA.tsv)
NB_FINDINGS_USERB=$($ps_helper report_count_findings Results_Users_userB.tsv)
cat >> mailbody_manager.txt << EOF

Number of defects: $NB_FINDINGS_ALL
Number of findings owned by userA: $NB_FINDINGS_USERA
Number of findings owned by userB: $NB_FINDINGS_USERB

All results are uploaded in: $PROJECT_URL

Build Status: $BUILD_STATUS

EOF

cat >> mailsubject_manager.txt << EOF
Polyspace run completed with status $BUILD_STATUS and $NB_FINDINGS_ALL findings

1 Polyspace Analysis on Server After Code Submission

1-26

EOF

for user in userA userB
do
echo "$user - $($ps_helper report_count_findings Results_Users_$user.tsv)) findings"\
 > mailsubject_user_$user.txt
done

==
Exit with correct build status

["$BUILD_STATUS" != "SUCCESS"] && exit 129
exit 0

After the script is run, you can create a post-build action to send an e-mail to a manager
with the exported file Results_All.tsv. Specify the e-mail address in the Recipients
field, the email subject in the Mail Subject field and the email body in the Mail Body
field.

In addition, a separate e-mail is sent to userA and userB with the files
Results_Users_userA.tsv and Results_Users_userB.tsv in attachment (and the
content of mailsubject_user_userA.txt and mailsubject_user_userB.txt as
mail subjects). The e-mail addresses are userA@companyname.com and
userB@companyname.com (determined from the user name and SMTP server configured
earlier).

 Sample Scripts for Polyspace Analysis with Jenkins

1-27

The script uses the helper function $ps_helper to filter the results based on group,
impact and function. The helper function uses command-line utilities to filter the master
file for results and perform actions such as create a separate results file for each owner.
The function takes these actions as arguments:

• report_filter: Filters results from exported text file based on contents of the text
file.

For instance:

1 Polyspace Analysis on Server After Code Submission

1-28

$ps_helper report_filter \
 Results_List.tsv \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"

reads the file Results_List.tsv and writes to the file
Results_Users_userA.tsv. The text file Results_List.tsv contains columns for
Group and Information. Only those rows where the Group column contains
Programming and the Information column contains Impact: High are written to
the file Results_Users_userA.tsv.

• report_status: Returns UNSTABLE or SUCCESS based on the number of results in a
file.

For instance:

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10))

returns UNSTABLE if the file Results_All.tsv contains more than 10 results (10
rows).

• report_count_findings: Reports number of results in a file.

For instance:

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)

returns the number of results (rows) in the file Results_All.tsv.
• prs_print_projecturl: Uses the host name and port number to create the URL of

the Polyspace Access web interface.

For instance:

PROJECT_URL=$($ps_helper prs_print_projecturl Results_All.tsv $POLYSPACE_ACCESS_URL)

reads the file Results_All.tsv (exported by the polyspace-access command)
and extracts the URL of the Polyspace Access web interface in
$POLYSPACE_ACCESS_URL and the URL of the current project in $PROJECT_URL.

 Sample Scripts for Polyspace Analysis with Jenkins

1-29

See Also
polyspace-access | polyspace-bug-finder-server | polyspace-code-prover-
server | polyspace-configure | polyspace-report-generator

More About
• “Run Polyspace Code Prover on Server and Upload Results to Web Interface”
• “Send Email Notifications with Polyspace Code Prover Results”

1 Polyspace Analysis on Server After Code Submission

1-30

Use Existing Software Development
Specifications for Polyspace
Analysis

• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “polyspace-configure Source Files Selection Syntax” on page 2-5
• “Modularize Polyspace Analysis by Using Build Command” on page 2-8
• “Create Polyspace Analysis Configuration from AUTOSAR Specifications”

on page 2-15

2

Create Polyspace Analysis Configuration from Build
Command

To run Polyspace on a server during continuous integration, you must configure all
analysis options beforehand so that the analysis completes without errors. These options
must be updated as necessary to keep up with new code submissions. If you use existing
artifacts such as a build command (makefile) to build new code submissions, you can
reuse the build command to configure a Polyspace analysis and stay updated with new
submissions. With the polyspace-configure command, you can monitor the execution
of a build command and create an options file for analysis with Polyspace.

This topic shows a simple tutorial illustrating how to create an options file from a build
command and use the file for the subsequent analysis. The topic uses a Linux makefile
and the GCC compiler, but you can adapt the commands to other operating systems such
as Windows and other compilers such as Microsoft® Visual Studio®.

1 Cope the demo source files from polyspaceserverroot\polyspace\examples
\cxx\Bug_Finder_Example\sources to a folder with write permissions. Here,
polyspaceserverroot is the root installation folder of the Polyspace server
products, for instance, C:\Program Files\Polyspace Server\R2019a.

2 Create a simple makefile that compiles the demo source files. Save the makefile in
the same folder as the source files.

For instance, create a file named makefile and add this content:

CC := gcc
SOURCES := $(wildcard *.c)

all: $(CC) -c $(SOURCES)

Check that the makefile builds the source files successfully. Open a command
terminal, navigate to the folder (using cd) and enter:

make

The make command should complete execution without errors.
3 Trace the build command with polyspace-configure and create an options file

compile_opts.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-2

polyspace-configure -output-options-file compile_opts make

4 Create a second options file with additional options. For instance, create a file
run_opts with this content:

-checkers numerical
-report-template BugFinder
-output-format pdf

The options run all numerical checkers in Bug Finder and creates a PDF report after
analysis using the BugFinder template.

5 Run a Bug Finder analysis with the two options files: compile_opts created from
your build command and run_opts created manually.

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

The analysis should complete without errors. You can open the results in the
Polyspace user interface or upload the results to the Polyspace Access web interface
(using the polyspace-access command).

To run Code Prover instead of Bug Finder, use the polyspace-code-prover-
server command instead of the polyspace-bug-finder-server command.

You can run a similar analysis using MATLAB scripts. Replace polyspace-bug-finder-
server with the function polyspaceBugFinderServer and polyspace-configure
with the function polyspaceConfigure.

See Also
polyspace-code-prover-server | polyspace-configure

See Also

More About
• “Prepare Scripts for Polyspace Analysis” on page 1-2
• “Specify Target Environment and Compiler Behavior” on page 5-2
• “polyspace-configure Source Files Selection Syntax” on page 2-5

 See Also

2-3

• “Modularize Polyspace Analysis by Using Build Command” on page 2-8

2 Use Existing Software Development Specifications for Polyspace Analysis

2-4

polyspace-configure Source Files Selection Syntax
When you create projects by using polyspace-configure, you can include or exclude
source files whose paths match the pattern that you pass to the options -include-
sources or -exclude-sources. You can specify these two options multiple times and
combine them at the command line.

This folder structure applies to these examples.

To try these examples, use the demo files in polyspaceroot\help\toolbox
\polyspace_code_prover_server\examples\sources-select. polyspaceroot is
the Polyspace installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources "glob_pattern" \
-print-excluded-sources -print-included-sources make -B

glob_pattern is the glob pattern that you use to match the paths of the files you want
to include or exclude from your project. To ensure the shell does not expand the glob
patterns you pass to polyspace-configure, enclose them in double quotes.

In the table, the examples assume that sources is a top-level folder.

 polyspace-configure Source Files Selection Syntax

2-5

Glob Pattern Syntax Example
No special characters, slashes ('/'), or
backslashes ('\').

Pattern matches corresponding files, but
not folders.

-include-sources "main.c" matches:

/sources/app/main.c

Pattern contains '*' or '?' special
characters.

'*' matches zero or more characters in file
or folder name.

'?' matches one character in file or folder
name.

The matches do not include path
separators.

-include-sources "b?.c" matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c

-include-sources "app/*.c" matches:

/sources/app/main.c

Pattern starts with slash '/' (UNIX®) or
drive letter (Windows).

Pattern matches absolute path only.

-include-sources "/a" does not match
anything.

-include-sources "/sources/app"
matches:

/sources/app/main.c
Pattern ends with a slash (UNIX), backslash
(Windows), or '**'.

Pattern matches all files under specified
folder.

'**' is ignored if it is at the start of the
pattern.

-include-sources "a/" matches

/sources/lib/a/a1.c

/sources/lib/a/a2.c

Pattern contains '/**/' (UNIX) or '**\'
(Windows). Pattern matches zero or more
folders in the specified path.

-include-sources "lib/**/?1.c"
matches:

/sources/lib/a/a1.c

/sources/lib/b/b1.c

2 Use Existing Software Development Specifications for Polyspace Analysis

2-6

Glob Pattern Syntax Example
Pattern starts with '.' or '..'.

Pattern matches paths relative to the path
where you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources "../lib/**/b?.c"
matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c
Pattern is a UNC path on Windows . If your files are on server myServer:

\\myServer\sources\lib\b**
matches:

\\myServer\sources\lib\b\b1.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

• Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
• Relative paths to the current folder.

For instance, C:foo\bar.
• Extended length paths in Windows.

For instance, \\?\foo.
• Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
• The '*' character by itself.

 polyspace-configure Source Files Selection Syntax

2-7

Modularize Polyspace Analysis by Using Build Command
To configure the Polyspace analysis, you can reuse the compilation options in your build
command such as make. First, you trace your build command with polyspace-
configure (or polyspaceConfigure in MATLAB®) and create a Polyspace options file.
You later specify this options file for the subsequent Polyspace analysis.

If your build command creates several binaries, by default polyspace-configure
groups the source files for all binaries into one Polyspace options file. If binaries that use
the same source files or functions are compiled with different options, you lose this
distinction in the subsequent Polyspace analysis. The presence of the same function
multiple times can lead to link errors during the Polyspace analysis and sometimes to
incorrect results.

This topic shows how to create a separate Polyspace options file for each binary created
in your makefile. Suppose that a makefile creates four binaries: two executable (target
cmd1 and cmd2) and two shared libraries (target liba and libb). You can create a
separate Polyspace options file for each of these binaries.

To try this example, use the files in polyspaceroot\help\toolbox
\polyspace_code_prover_server\examples\multiple_modules. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a or C:\Program Files\Polyspace Server\R2019a.

Build Source Code
Inspect the makefile. The makefile creates four binaries:

2 Use Existing Software Development Specifications for Polyspace Analysis

2-8

CC := gcc
LD := ld

LIBA_SOURCES := $(wildcard src/liba/*.c)
LIBB_SOURCES := $(wildcard src/libb/*.c)
CMD1_SOURCES := $(wildcard src/cmd1/*.c)
CMD2_SOURCES := $(wildcard src/cmd2/*.c)
LIBA_OBJ := $(notdir $(LIBA_SOURCES:.c=.o))
LIBB_OBJ := $(notdir $(LIBB_SOURCES:.c=.o))
CMD1_OBJ := $(notdir $(CMD1_SOURCES:.c=.o))
CMD2_OBJ := $(notdir $(CMD2_SOURCES:.c=.o))
LIBB_SOBJ := libb.so
LIBA_SOBJ := liba.so

all: cmd1 cmd2

cmd1: liba libb
 $(CC) -o $@ $(CMD1_SOURCES) $(LIBA_SOBJ) $(LIBB_SOBJ)

cmd2: libb
 $(CC) -c $(CMD2_SOURCES)
 $(LD) -o $@ $(CMD2_OBJ) $(LIBB_SOBJ)

liba: libb
 $(CC) -fPIC -c $(LIBA_SOURCES)
 $(CC) -shared -o $(LIBA_SOBJ) $(LIBA_OBJ)

libb:
 $(CC) -fPIC -c $(LIBB_SOURCES)
 $(CC) -shared -o $(LIBB_SOBJ) $(LIBB_OBJ)

.PHONY: clean
clean:
 rm *.o

The binaries created have the dependencies shown in this figure. For instance, creation of
the object cmd1.o depends on all .c files in the folder cmd1 and the shared objects
liba.so and libb.so.

 Modularize Polyspace Analysis by Using Build Command

2-9

Build your source code by using the makefile. Use the -B flag to ensure full build.

make -B

Make sure that the build runs to completion.

Create One Polyspace Options File for Full Build
Trace the build command by using polyspace-configure. Use the option -output-
options-file to create a Polyspace options file psoptions from the build command.

polyspace-configure -output-options-file psoptions make -B

2 Use Existing Software Development Specifications for Polyspace Analysis

2-10

Run Bug Finder or Code Prover by using the previously created options file: Save the
analysis results in a results subfolder.

polyspace-code-prover-server -options-file psoptions -results-dir results

You see this link error (warning in Bug Finder):

Procedure 'main' multiply defined.

The error occurs because the files cmd1/cmd1_main.c and cmd2/cmd2_main.c both
have a main function. When you run your build command, the two files are used in
separate targets in the makefile. However, polyspace-configure by default creates
one options file for the full build. The Polyspace options file contains both source files
resulting in conflicting definitions of the main function.

To verify the cause of the error, open the Polyspace options file psoptions. You see these
lines that include the files with conflicting definitions of the main function.

-sources src/cmd1/cmd1_main.c
-sources src/cmd2/cmd2_main.c

Create Options File for Specific Binary in Build Command
To avoid the link error, build the source code for a specific binary when tracing your build
command by using polyspace-configure.

For instance, build your source code for the binary cmd1.o. Specify the makefile target
cmd1 for make, which creates this binary.

polyspace-configure -output-options-file psoptions make -B cmd1

Run Bug Finder or Code Prover by using the previously created options file.

polyspace-code-prover-server -options-file psoptions -results-dir results

The link error does not occur and the analysis runs to completion. You can open the
Polyspace options file psoptions and see that only the source files in the cmd1 subfolder
and the files involved in creating the shared objects are included with the -sources

 Modularize Polyspace Analysis by Using Build Command

2-11

option. The source files in the cmd2 subfolder, which are not involved in creating the
binary cmd1.o, are not included in the Polyspace options file.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do
not contain a main function. In the subsequent Code Prover analysis, you can see an error
because of the missing main.

Use the Polyspace option Verify module or library (-main-generator) to
generate a main function. Specify the option in the options file that was created or
directly at the command line. See “Verify C Application Without main Function” on page
9-6.

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

Create One Options File Per Binary Created in Build Command
To create an options file for a specific binary created in the build command, you must
know the details of your build command. If you are not familiar with the internal details of
the build command, you can create a separate Polyspace options file for every binary
created in the build command. The approach works for binaries that are executables,
shared (dynamic) libraries and static libraries.

This approach works only if you use these compilers:

• GNU C or GNU C++
• Microsoft Visual C++

Trace the build command by using polyspace-configure.To create a separate options
file for each binary, use the option -module with polyspace-configure.

polyspace-configure -module -output-options-path optionsFilesFolder make -B

2 Use Existing Software Development Specifications for Polyspace Analysis

2-12

The command creates options files in the folder optionsFilesFolder. In the preceding
example, the command creates four options files for the four binaries:

• cmd1.psopts
• cmd2.psopts
• liba_so.psopts
• libb_so.psopts

You can run Polyspace on the code implementation of a specific binary by using the
corresponding options file. For instance, you can run Code Prover on the code
implementation of the binary created from the makefile target cmd1 by using this
command:

polyspace-code-prover-server -options-file cmd1.psopts -results-dir results

For this approach, you do not need to know the details of your build command. However,
when you create a separate options file for each binary in this way, each options file
contains source files directly involved in the binary and not through shared objects. For
instance, the options file cmd1.psopts in this example specifies only the source files in
the cmd1 subfolder and not the source files involved in creating the shared objects
liba.so and libb.so. The subsequent analysis by using this options file cannot access
functions from the shared objects and uses function stubs instead. In the Code Prover
analysis, if you see too many orange checks due to the stubbing, use the approach stated
in the section “Create Options File for Specific Binary in Build Command” on page 2-11.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do
not contain a main function. In the subsequent Code Prover analysis, you can see an error
because of the missing main.

Use the Polyspace option Verify module or library (-main-generator) to
generate a main function. Specify the option in the options file that was created or
directly at the command line. See “Verify C Application Without main Function” on page
9-6.

In C++, use these additional options for classes:

 Modularize Polyspace Analysis by Using Build Command

2-13

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

See Also
polyspace-code-prover-server | polyspace-configure

More About
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

2 Use Existing Software Development Specifications for Polyspace Analysis

2-14

Create Polyspace Analysis Configuration from AUTOSAR
Specifications

If you use the AUTOSAR methodology for software development, you can create a
Polyspace analysis configuration directly from your AUTOSAR specifications. With the
product, Polyspace Code Prover Server, you can then run a Code Prover analysis on the
code implementation of AUTOSAR Software Components.

To follow the steps in this tutorial, use the demo files in polyspaceroot\help
\toolbox\polyspace_code_prover_server\examples\polyspace_autosar.

Benefits of Polyspace for AUTOSAR
Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR software components. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

Polyspace for AUTOSAR reads the ARXML specifications that you provide and
modularizes the analysis based on the software components in the ARXML specifications.
The analysis then checks each module for:

• Mismatch with AUTOSAR specifications: These checks aim to prove that certain
functions are implemented or used in accordance with the specifications in the
ARXML. The checks apply to runnables (functions provided by the software
components) and to the usage of functions supplied by the Run-Time Environment
(RTE). See also:

• AUTOSAR runnable not implemented
• Invalid result of AUTOSAR runnable implementation
• Invalid use of AUTOSAR runtime environment function

For instance, if an RTE function argument has a value outside the constrained range
defined in the ARXML, the analysis flags a possible issue.

• Run-time errors: These checks aim to prove the absence of certain types of run-time
errors in the bodies of the runnables (for instance, overflow). The proof uses the
specifications in the ARXML to determine precise ranges for runnable arguments and
RTE function return values and output arguments. For instance, the proof considers

 Create Polyspace Analysis Configuration from AUTOSAR Specifications

2-15

only those values of runnable arguments that are specified in their AUTOSAR data
types.

Run Polyspace on AUTOSAR Code
Run the polyspace-autosar command with paths to your ARXML and source code
folder. The command parses the ARXML and source files, creates a Polyspace project and
analyzes all modules in the project for run-time errors or violation of data constraints in
the ARXML.

In the first run, specify the path to your ARXML and source files explicitly. In later runs,
specify the file psar_project.xhtml created in the previous run. The analysis detects
changes in the ARXML and source files since the last run and reanalyzes only those
modules where the software component implementation changed. If the ARXML
specification changed since the previous analysis, the new analysis reanalyzes all
modules.

For instance, you can run these commands in a .bat script. In the first run, this script
looks for the ARXML specifications in a folder arxml in the current folder, and C source
files in a folder code. The results are stored in a folder polyspace in the current folder.
In later runs, the analysis reuses the result from the previous run through the file
psar_project.xhtml and updates the results only for the software components
modified since the last run.

echo off
set POLYSPACE_AUTOSAR_PATH=C:\Program Files\Polyspace Server\R2019a\polyspace\bin

IF NOT EXIST polyspace\psar_project.xhtml (
"%POLYSPACE_AUTOSAR_PATH%\polyspace-autosar" -create-project polyspace \
 -arxml-dir arxml -sources-dir code
) ELSE (
"%POLYSPACE_AUTOSAR_PATH%\polyspace-autosar" \
 -update-project polyspace\psar_project.xhtml
)
Pause

You can also run Code Prover on code implementation of AUTOSAR software components
with MATLAB scripts. See polyspaceAutosar.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-16

Upload Results to Polyspace Access Web Interface
For each Software Component behavior, the Code Prover analysis produces an individual
result file (with extension .pscp). The path to the results file is determined by the fully
qualified name of the Software Component. For instance:

• A Software Component behavior with full name pkg.tst002.swc001.bhv001 has
results stored in the file ps_results.pscp in the subfolder AUTOSAR\pkg
\tst002\swc001\bhv001\verification\ of the results folder.

• A Software Component behavior with full name pkg.tst002.swc002.bhv has
results stored in the file ps_results.pscp in the subfolder AUTOSAR\pkg
\tst002\swc002\bhv\verification\ of the results folder.

To upload all results, use the polyspace-access command. Before using the
polyspace-access command, you have to write some additional code to find the folders
directly containing the results file. You also have to create a name for each result as it
would appear on the Polyspace Access web interface (otherwise, all uploads use the same
default name and overwrite each other). The basic algorithm is the following:

• Recursively search all subfolders of the results folder for files with extension .pscp.
Use the subfolder path that directly contains a .pscp file as argument for the -
upload option of the polyspace-access command.

• Create a result name based on the path from the top of the results folder to the
subfolder directly containing the .pscp file. Use this name as argument for the -
project option of the polyspace-access command.

A sample Windows batch file for upload can look like this:

 Create Polyspace Analysis Configuration from AUTOSAR Specifications

2-17

echo off
setlocal enabledelayedexpansion
set POLYSPACE_AUTOSAR_PATH=C:\Program Files\Polyspace Server\R2019a\polyspace\bin

rem Recursively search for all files with extension .pscp
dir *.pscp /b /s > file.txt

rem Upload each result file to Polyspace Access web interface
for /f "delims=" %%g in (file.txt) do (
 rem Get full path to result file with extension .pscp
 set filePath=%%~dpg
 rem Remove the current folder from the full path, then replace '\' with '.',
 rem Then remove leading and trailing '.'
 set projectName=!filePath:%cd%=!
 set projectName=!projectName:\=.!
 set projectName=!projectName:~1,-1!
 polyspace-access login -parent-project autosar
 -upload "!filePath:~0,-1!" -project !projectName!
)

Pause

In this script, the variable login refers to the following combination of options. You
provide these options with every use of the polyspace-access command.

-host hostName -port portNumber -login username -encrypted-password pwd

Here, hostName is the name of the Polyspace Code Prover Access web server. For a
locally hosted server, use localhost. portNumber is the optional port number of the
server. If you omit the port number, 9443 is used. username and pwd refer to the login
and an encrypted version of your password. To create an encrypted password, enter:

polyspace-access -encrypt-password

Copy the encrypted password and provide this password with later uses of the
polyspace-access command.

Once the results are uploaded, you can see them in the Polyspace Access web interface.
In the preceding script, a project name autosar is used with the option -parent-
project for all results files. After upload, all results appear under this parent project.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-18

For more information on how to review the results, see Polyspace Code Prover Access
documentation.

See Also
polyspace-access | polyspace-autosar

 See Also

2-19

Offload Polyspace Analysis to
Remote Servers from Desktop

• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

on page 3-7

3

Send Polyspace Analysis from Desktop to Remote
Servers

In this section...
“Client-Server Workflow for Running Analysis” on page 3-2
“Prerequisites” on page 3-4
“Offload Analysis in Polyspace User Interface” on page 3-4

You can perform a Polyspace analysis locally on your desktop or offload the analysis to
one or more dedicated servers. You offload a Polyspace analysis from a Polyspace desktop
product such as Polyspace Bug Finder but the analysis runs on the server using a
Polyspace server product such as Polyspace Bug Finder Server.

This topic shows how to send a Polyspace analysis from the user interface of the
Polyspace desktop products.

• To offload an analysis with scripts, see “Send Polyspace Analysis from Desktop to
Remote Servers Using Scripts” on page 3-7.

• For a simple tutorial that walks through all the steps for offloading a Polyspace
analysis, see “Send Code Prover Analysis from Desktop to Locally Hosted Server”. In
the tutorial, the same computer acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a
server. The client-server workflow happens in three steps. All three steps can be
performed on the same computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the
client desktop. The initial phase of analysis upto compilation runs on the desktop.
After compilation, the analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer
that acts as the client node.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-2

2 Head node: The server consists of a head node and several worker nodes. The head
node uses a job scheduler to manage submissions from multiple client desktops. The
jobs are then distributed to the worker nodes as they become available.

You require the product MATLAB Parallel Server™ on the computer that acts as the
head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the
analysis to the worker. The Polyspace analysis runs on the worker and the results are
downloaded back to the client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker
nodes. You also require the Polyspace server products, Polyspace Bug Finder Server
and/or Polyspace Code Prover Server, to run the analysis.

 Send Polyspace Analysis from Desktop to Remote Servers

3-3

Prerequisites
Before offloading an analysis from the user interface of the Polyspace desktop products,
you must set up your project’s source files, analysis options, and remote analysis settings.
If you have not done so, for more information on:

• How to add source files, see “Add Source Files for Analysis in Polyspace User
Interface” (Polyspace Code Prover).

• How to set up communication between client and server, see “Install Products for
Submitting Polyspace Analysis from Desktops to Remote Server”.

Once you have set up a Polyspace project and established communicated between a
desktop and a remote server, you are ready to offload a Polyspace analysis.

Offload Analysis in Polyspace User Interface
To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.

Select Run Bug Finder analysis on a remote cluster and/or Run Code Prover
analysis on a remote cluster.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-4

3 If you want to store your results in the Polyspace Metrics repository, select Upload
results to Polyspace Metrics.

Otherwise, clear this check box. After analysis, the results are downloaded to the
desktop for review.

4 Start the analysis. For instance, to start a Bug Finder analysis, click the Run Bug
Finder button.

The compilation part of the analysis takes place on the desktop product. After
compilation, the analysis is offloaded to the server.

5 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job
Monitor, follow your queued job to monitor progress.

Once the analysis is complete, the results are downloaded back to the user interface
of the Polyspacedesktop products. You can open the results directly in the user
interface. If you uploaded the results to Polyspace Metrics, you have to explicitly
download them from the Polyspace Metrics interface.

 Send Polyspace Analysis from Desktop to Remote Servers

3-5

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-
previous-compilation-results.

Note If you choose to upload results to Polyspace Metrics, your results are not
downloaded automatically after verification. Use the Polyspace Metrics web dashboard to
view the results and download them to your desktop. For more information, see “View
Code Quality Metrics” (Polyspace Code Prover).

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 3-

7

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-6

Send Polyspace Analysis from Desktop to Remote
Servers Using Scripts

Instead of running a Polyspace analysis on your local desktop, you can send the analysis
to a remote cluster. You can use a dedicated cluster for running Polyspace to free up
memory on your local desktop.

This topic shows how to use Windows or Linux scripts to send the analysis to a remote
cluster and download the results to your desktop after analysis.

• To offload an analysis from the Polyspace user interface, see “Send Polyspace Analysis
from Desktop to Remote Servers” on page 3-2.

• For a simple tutorial that walks through all the steps for offloading a Polyspace
analysis, see “Send Code Prover Analysis from Desktop to Locally Hosted Server”. In
the tutorial, the same computer acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a
server. The client-server workflow happens in three steps. All three steps can be
performed on the same computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the
client desktop. The initial phase of analysis upto compilation runs on the desktop.
After compilation, the analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer
that acts as the client node.

2 Head node: The server consists of a head node and several worker nodes. The head
node uses a job scheduler to manage submissions from multiple client desktops. The
jobs are then distributed to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the
head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the
analysis to the worker. The Polyspace analysis runs on the worker and the results are
downloaded back to the client desktop for review.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-7

You require the product MATLAB Parallel Server on the computers that act as worker
nodes. You also require the Polyspace server products, Polyspace Bug Finder Server
and/or Polyspace Code Prover Server to run the analysis.

Prerequisites
Before you run a remote analysis by using scripts, you must set up communication
between a desktop and a remote server. See “Install Products for Submitting Polyspace
Analysis from Desktops to Remote Server”.

Run Remote Analysis
To run a remote analysis, use this command:

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-8

polyspaceroot\polyspace\bin\polyspace-code-prover
-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• polyspaceroot is the installation folder of Polyspace desktop products, for instance,
C:\Program Files\Polyspace\R2019a.

• NodeHost is the name of the computer that hosts the head node of the MATLAB
Parallel Server cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can
determine NodeHost and MJSName from the user interface. Select Metrics > Metrics
and Remote Server Settings. Open the MATLAB Parallel Server Admin Center.
Under MATLAB Job Scheduler, see the Name and Hostname columns for MJSName
and NodeHost.

If you use the startjobmanager command to start the MATLAB Job Scheduler,
MJSName is the argument of the option -name. For details, see “Configure Advanced
Options for MATLAB Job Scheduler Integration” (MATLAB Parallel Server).

• options are the analysis options. These options are the same as that of a local
analysis. For instance, you can use these options:

• -sources-list-file: Specify a text file with one source file name per line.
• -options-file: Specify a text file with one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Analysis Options”. Alternatively, you can:

• Start an analysis in the user interface and stop after compilation. You can obtain
the text files and scripts for running the analysis at the command line. See
“Configure Polyspace Analysis Options in User Interface and Generate Scripts” on
page 1-7.

• Enter polyspace-codeprover -h. The list of available options with a brief
description are displayed.

• Place your cursor over each option on the Configuration pane in the Polyspace
user interface. Click the More Help button for information on the option syntax
and when the option is required.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-9

The analysis executes locally on your desktop up to the end of the compilation phase.
After compilation, the software submits the analysis job to the cluster and provides a job
ID. You can also read the ID from the file ID.txt in the results folder. To monitor your
analysis, use the polyspace-jobs-manager command with the job ID.

If the analysis stops after compilation and you have to restart the analysis, to avoid
rerunning the compilation phase, use the option -submit-job-from-previous-
compilation-results.

Manage Remote Analysis
To manage multiple remote analyses, use the option -batch. For instance:

polyspaceroot\polyspace\bin\polyspace-jobs-manager action
 -scheduler schedulerName

See also Run Bug Finder or Code Prover analysis on a remote cluster (-
batch). Here:

• polyspaceroot is your MATLAB installation folder.
• schedulerName is one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server
cluster (NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace preferences. To see the scheduler name, select Tools >
Preferences. On the Server Configuration tab, see the Job scheduler host name.

• action refers to the possible action commands to manage jobs on the scheduler:

• listjobs:

Generate a list of Polyspace jobs on the scheduler. For each job, the software
produces this information:

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-10

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted job.
• APPLICATION — Name of Polyspace product, for example, Polyspace Code

Prover or Polyspace Bug Finder.
• LOCAL_RESULTS_DIR — Results folder on local computer, specified through the

Tools > Preferences > Server Configuration tab.
• WORKER — Local computer from which job was submitted.
• STATUS — Status of job, for example, running and completed.
• DATE — Date on which job was submitted.
• LANG — Language of submitted source code.

• download -job ID -results-folder FolderPath:

Download results of analysis with specified ID to folder specified by FolderPath.

When the analysis job is queued on the server, the command polyspace-code-
prover returns a job id. In addition, a file ID.txt in the results folder contains the
job ID in this format:

job_id;server_name:project_name version_number

For instance, 92;localhost:Demo 1.0.

If you do not use the -results-folder option, the software downloads the result
to the folder that you specified when starting analysis, using the -results-dir
option.

After downloading results, use the Polyspace user interface to view the results.
• getlog -job ID:

Open log for job with specified ID.
• remove -job ID:

Remove job with specified ID.
• promote -job ID:

Promote job with specified ID in the queue.
• demote -job ID

Demote job with specified ID in the queue.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-11

Sample Scripts for Remote Analysis
In Windows, to avoid typing the commands each time, you can save the commands in a
batch file. In Linux, you can relaunch the analysis by using a shell script. To create a
batch file for running analysis:

1 Save your analysis options in a file listofoptions.txt. See -options-file.
2 Create a file launcher.bat in a text editor like Notepad.

In the file, enter these commands:

echo off
set POLYSPACE_PATH=polyspaceroot\polyspace\bin
set RESULTS_PATH=C:\Results
set OPTIONS_FILE=C:\Options\listofoptions.txt
"%POLYSPACE_PATH%\polyspace-code-prover.exe" -batch -scheduler localhost
 -results-dir %RESULTS_PATH% -options-file %OPTIONS_FILE%
pause

polyspaceroot is the Polyspace installation folder. localhost is the name of the
computer that hosts the head node of your MATLAB Parallel Server cluster.

3 Replace the definitions of these variables in the file:

• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during compilation

are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.

4 Double-click launcher.bat to run the analysis.

Tip If you run a Polyspace analysis, a Windows .bat or Linux .sh file is generated. The
file is in the .settings subfolder in your results folder. Instead of writing a script from
scratch, you can relaunch the analysis using this file.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-12

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2

 See Also

3-13

Run Polyspace Analysis on Server
with MATLAB Scripts

4

Integrate Polyspace Server Products with MATLAB and
Simulink

You can install Polyspace Bug Finder Server and Polyspace Code Prover Server as
standalone products and analyze C/C++ code. However, if you have an installation of
MATLAB, you can run the Polyspace analysis with MATLAB scripts.

If you install Polyspace server products and MATLAB, you have to run the MATLAB
installer twice and install Polyspace in a different root folder from the other products. For
instance, in Windows:

• Your default MATLAB root folder is C:\Program Files\MATLAB\R2019a.
• Your default Polyspace root folder is C:\Program Files\Polyspace Server

\R2019a for the Polyspace server products.

To run Polyspace from within MATLAB, Simulink or MATLAB Coder™, you have to
perform a post-installation step to link your MATLAB and Polyspace installations.

Integrate Polyspace with MATLAB Installation from Same
Release
If your Polyspace and MATLAB installations belong to the same release, you can use all
MATLAB functions and classes available for running Polyspace.

To link your MATLAB and Polyspace installations:

1 Open MATLAB with administrator privileges.
2 Navigate to polyspaceserverroot\toolbox\polyspace\pscore\pscore\.

Here, polyspaceserverroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace Server\R2019a.

3 At the MATLAB command prompt, enter:

polyspacesetup('install')

You see a prompt stating that the workspace will be cleared. Click Yes to continue the
linking. The process might take a few minutes to complete.

4 Run Polyspace Analysis on Server with MATLAB Scripts

4-2

4 Restart MATLAB. You can now use all functions and classes available for running
Polyspace server products.

A MATLAB installation can be linked with only one Polyspace installation. To link to a new
Polyspace installation, any previous links must be removed. To remove a link between a
Polyspace and MATLAB installation, repeat the same steps as before with one difference:
At the MATLAB command prompt, enter:

polyspacesetup('uninstall')

Integrate Polyspace with MATLAB Installation from Different
Release
If you upgrade your Polyspace server product installation but not your MATLAB
installation, you can link your MATLAB installation with the later release of the Polyspace
server product.

Remove the existing link between your Polyspace and MATLAB installation as described
in the previous section. Then, in your post-installation step, navigate to
polyspaceserverroot\toolbox\polyspace\pscore\pscore\, where
polyspaceroot is the installation folder for the later release of Polyspace Bug Finder
Server and/or Polyspace Code Prover Server. At the MATLAB command prompt, enter:

polyspacesetup('install')

If you integrate MATLAB with a later release of Polyspace, you cannot use all functions
and classes available to run the analysis. In particular, you cannot use the
polyspace.Project class. Instead, use the polyspaceCodeProverServer function to
run Code Prover and the polyspaceBugFinderServer function to run Bug Finder on
handwritten code.

Check Integration Between MATLAB and Polyspace
To check if a MATLAB installation is already linked to a Polyspace installation, open
MATLAB and enter a Polyspace-specific command, for instance:

obj = polyspace.Project

 Integrate Polyspace Server Products with MATLAB and Simulink

4-3

The command will display an error if the MATLAB installation is not linked to a Polyspace
installation.

Run Polyspace Server Products with MATLAB Scripts
In a continuous integration process, you can execute MATLAB scripts that run a
Polyspace analysis on new code submissions and compares the results against predefined
criteria. Use these functions/classes:

• Create a polyspace.Project object to configure Polyspace analysis options, run an
analysis and read results to MATLAB tables. You can use other MATLAB functions for
comparing results against predefined criteria.

To only read existing results without running an analysis, use the
polyspace.BugFinderResults or polyspace.CodeProverResults class with
the path to a results folder.

• If you want a more granular selection of checkers for:

• Coding rules, create a polyspace.CodingRulesOptions object.
• Bug Finder defects, create a polyspace.DefectsOptions object.

To create a custom target for the analysis and explicitly specify sizes of data types,
create a polyspace.GenericTargetOptions object.

You can also use the polyspaceBugFinderServer or polyspaceCodeProverServer
function to run the analysis and then read results with the
polyspace.BugFinderResults or polyspace.CodeProverResults class. If you use
build commands to build your source code, you can create a Polyspace configuration from
the build command using the polyspaceConfigure function.

4 Run Polyspace Analysis on Server with MATLAB Scripts

4-4

Configure Target and Compiler
Options

5

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and
the compiler that you use for building your code. In certain cases, to emulate your
compiler behavior, you might have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types,
considers certain macros as defined, and interprets compiler-specific extensions of the
Standard. If the options do not correspond to your run-time environment, you can
encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command
meets certain restrictions, you can extract the options from the build command.
Otherwise, specify the options explicitly.

5 Configure Target and Compiler Options

5-2

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace
project from your scripts. The options associated with your compiler are specified in that
project.

In the Polyspace desktop products, for information on how to trace your build command
from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace User
Interface” (Polyspace Code Prover).

• DOS or UNIX command line, see polyspace-configure.
• MATLAB command line, see polyspaceConfigure.

In the Polyspace server products, for information on how to trace your build command,
see “Create Polyspace Analysis Configuration from Build Command” on page 2-2.

 Specify Target Environment and Compiler Behavior

5-3

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” on page 5-
23.

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you
have to specify the options explicitly.

• In the user interface of the Polyspace desktop products, select a project configuration.
On the Configuration pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-bug-finder,
polyspace-code-prover, polyspace-bug-finder-server or polyspace-
code-prover-server command.

• At the MATLAB command line, specify arguments with the polyspaceBugFinder,
polyspaceCodeProver, polyspaceBugFinderServer or
polyspaceCodeProverServer function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c
or .cpp, the verification uses the extension to determine the source code language.
Otherwise, explicitly specify the option.

• Compiler (-compiler): Select the compiler that you use for building your
source code. If you cannot find your compiler, use an option that closely matches
your compiler.

• Target processor type (-target): Specify the target processor on which
you intend to execute your code. For some processors, you can change the default
specifications. For instance, for the processor hc08, you can change the size of
types double and long double from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and
specify the sizes of fundamental types, default signedness of char, and endianness
of the target machine. See Generic target options.

• Language-specific options:

• C standard version (-c-version): The default C language standard depends
on your compiler specification. If you do not specify a compiler explicitly, the

5 Configure Target and Compiler Options

5-4

default analysis uses the C99 standard. Specify an earlier standard such as C90 or
a later standard such as C11.

• C++ standard version (-cpp-version): The default C++ language standard
depends on your compiler specification. If you do not specify a compiler explicitly,
the default analysis uses the C++03 standard. Specify later standards such as C+
+11 or C++14.

• Compiler-specific options:

Whether these options are available or not depends on your specification for
Compiler (-compiler). For instance, if you select a visual compiler, the option
Pack alignment value (-pack-alignment-value) is available. Using the
option, you emulate the compiler option /Zp that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use
the option Division round down (-div-round-down), the verification considers
that quotients from division or modulus of negative numbers are rounded down. Use
these options only if you use similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path
to your compiler header files. See “Provide Standard Library Headers for Polyspace
Analysis” on page 5-21.

If you still see compilation errors after running analysis, you might have to specify other
options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers
a macro as undefined. Explicitly define these macros. See Preprocessor
definitions (-D).

• Specify include files: Sometimes, a compilation error occurs because your compiler
defines standard library functions differently from Polyspace and you do not provide
your compiler include files. Explicitly specify the path to your compiler include files.
See “Provide Standard Library Headers for Polyspace Analysis” on page 5-21.

 Specify Target Environment and Compiler Behavior

5-5

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Compiler (-compiler) | Preprocessor definitions (-D) | Source code
language (-lang) | Target processor type (-target)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7
• “Provide Standard Library Headers for Polyspace Analysis” on page 5-21

5 Configure Target and Compiler Options

5-6

C/C++ Language Standard Used in Polyspace Analysis
The Polyspace analysis adheres to a specific language standard for code compilation. The
language standard, along with your compiler specification, defines the language elements
that you can use in your code. For instance, if the Polyspace analysis uses the C99
standard, C11 features such as use of the thread support library from threads.h causes
compilation errors.

Supported Language Standards
The Polyspace analysis supports these standards:

• C: C90, C99, C11

The default standard depends on your compiler specification. If you do not specify a
compiler explicitly, the default analysis uses the C99 standard. To change the language
standard, use the option C standard version (-c-version).

• C++: C++03, C++11, C++14

The default standard depends on your compiler specification. If you do not specify a
compiler explicitly, the default analysis uses the C++03 standard. To change the
language standard, use the option C++ standard version (-cpp-version).

Default Language Standard
The default language standard depends on your specification for the option Compiler (-
compiler).

Compiler C Standard C++ Standard
generic C99 C++03
gnu3.4, gnu4.6, gnu4.7,
gnu4.8, gnu4.9

C99 C++03

gnu5.x C11 C++03
gnu6.x C11 C++14
gnu7.x C11 C++14

 C/C++ Language Standard Used in Polyspace Analysis

5-7

Compiler C Standard C++ Standard
clang3.x C99 C++03

The analysis accepts some C
++11 extensions.

clang4.x C99 C++03

The analysis accepts C++14
extensions.

clang5.x C99 C++03

The analysis accepts C++14
extensions.

visual9.0, visual10.0,
visual11.0, visual12.0

C99 C++03

visual14.0 C99 C++14
visual15.x C99 C++14
iar C99 C++03
armcc C99 C++03
armclang C11 C++03
keil C99 C++03
diab C99 C++03
tasking C99 C++03
greenhills C99 C++03
codewarrior C99 C++03
ti C99 C++03
iar-ew C99 C++03
renesas C99 C++03

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Compiler (-compiler)

5 Configure Target and Compiler Options

5-8

More About
• “C11 Language Elements Supported in Polyspace” on page 5-10
• “C++11 Language Elements Supported in Polyspace” on page 5-12
• “C++14 Language Elements Supported in Polyspace” on page 5-17

 See Also

5-9

C11 Language Elements Supported in Polyspace
This table provides a partial list of C language elements that have been introduced since
C11 and the corresponding Polyspace support. If your code contains non-supported
constructions, Polyspace reports a compilation error.

C11 Language Element Supported
alignas and alignof convenience
macros

Yes

aligned_alloc function Yes
noreturn convenience macros Yes
Generic selection Yes
Thread support library (threads.h) Yes
Atomic operations library (stdatomic.h) Yes
Atomic types with _Atomic Yes.

If you use the Clang compiler, see
limitations book for limitations on atomic
data types. See “Limitations of Polyspace
Verification” (Polyspace Code Prover).

UTF-16 and UTF-32 character utilities Yes
Bound-checking interfaces or alternative
versions of standard library functions that
check for buffer overflows (Annex K of C11)

For instance, strcpy_s is an alternative to
strcpy that checks for certain errors in
the string copy.

No.

Polyspace checks for certain run-time
errors in use of standard library functions.
The checking does not extend to these
alternatives.

Anonymous structures and unions Yes
Static assert declaration Yes

5 Configure Target and Compiler Options

5-10

C11 Language Element Supported
Features related to error handling such as
errno_t and rsize_t typedef-s

No.

If you see compilation errors from use of
these typedef-s, explicitly specify the path
to your compiler headers. See “Provide
Standard Library Headers for Polyspace
Analysis” on page 5-21.

quick_exit and at_quick_exit Yes.

In Bug Finder, functions registered with
at_quick_exit appear as uncalled.

CMPLX, CMPLXF and CMPLXL macros Yes

See Also
C standard version (-c-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

 See Also

5-11

C++11 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced
since C++11 and the corresponding Polyspace support. If your code contains non-
supported constructions, Polyspace reports a compilation error.

C++11 Std Ref Description Supported
C++2011-
DR226 Default template arguments for function templates Yes
C++2011-
DR339 Solving the SFINAE problem for expressions Yes
C++2011-
N1610 Initialization of class objects by rvalues Yes
C++2011-
N1653 C99 preprocessor Yes
C++2011-
N1720 Static assertions Yes
C++2011-
N1737 Multi-declarator auto Yes
C++2011-
N1757 Right angle brackets Yes
C++2011-
N1791 Extended friend declarations No
C++2011-
N1811 long long Yes
C++2011-
N1984 auto-typed variables Yes
C++2011-
N1986 Delegating constructors Yes
C++2011-
N1987 Extern templates Yes
C++2011-
N1988 Extended integral types Yes

5 Configure Target and Compiler Options

5-12

C++11 Std Ref Description Supported
C++2011-
N2118 Rvalue references Yes
C++2011-
N2170 Universal character name literals Yes
C++2011-
N2179 Concurrency: Propagating exceptions No
C++2011-
N2235 Generalized constant expressions Yes

C++2011-
N2239 Concurrency: Sequence points

No new syntax/
keyword is
introduced and
therefore does not
affect Polyspace
support for C+
+11.

C++2011-
N2242 Variadic templates Yes
C++2011-
N2249 New character types Yes
C++2011-
N2253 Extending sizeof Yes
C++2011-
N2258 Template aliases Yes
C++2011-
N2340 __func__ predefined identifier Yes
C++2011-
N2341 Alignment support Yes
C++2011-
N2342 Standard Layout Types Yes
C++2011-
N2343 Declared type of an expression Yes
C++2011-
N2346 Defaulted and deleted functions Yes

 C++11 Language Elements Supported in Polyspace

5-13

C++11 Std Ref Description Supported
C++2011-
N2347 Strongly typed enums Yes
C++2011-
N2427 Concurrency: Atomic operations No

C++2011-
N2429 Concurrency: Memory model

No new syntax/
keyword is
introduced and
therefore does not
affect Polyspace
support for C+
+11.

C++2011-
N2431 Null pointer constant Yes
C++2011-
N2437 Explicit conversion operators Yes
C++2011-
N2439 Rvalue references for *this Yes
C++2011-
N2440

Concurrency: Abandoning a process and
at_quick_exit Yes

C++2011-
N2442 Unicode string literals Yes
C++2011-
N2442 Raw string literals Yes
C++2011-
N2535 Inline namespaces Yes
C++2011-
N2540 Inheriting constructors Yes
C++2011-
N2541 New function declarator syntax Yes
C++2011-
N2544 Unrestricted unions Yes
C++2011-
N2546 Removal of auto as a storage-class specifier Yes

5 Configure Target and Compiler Options

5-14

C++11 Std Ref Description Supported
C++2011-
N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-
N2555 Extending variadic template template parameters Yes
C++2011-
N2657 Local and unnamed types as template arguments Yes
C++2011-
N2659 Concurrency: Thread-local storage No
C++2011-
N2660

Concurrency: Dynamic initialization and
destruction with concurrency Yes

C++2011-
N2664

Concurrency: Data-dependency ordering: atomics
and memory model No

C++2011-
N2672 Initializer lists Yes
C++2011-
N2748 Concurrency: Strong Compare and Exchange No
C++2011-
N2752 Concurrency: Bidirectional Fences No
C++2011-
N2756 Nonstatic data member initializers Yes
C++2011-
N2761 Generalized attributes Yes
C++2011-
N2764 Forward declarations for enums Yes
C++2011-
N2765 User-defined literals Yes
C++2011-
N2927 New wording for C++0x lambdas Yes
C++2011-
N2928 Explicit virtual overrides Yes
C++2011-
N2930 Range-based for Yes

 C++11 Language Elements Supported in Polyspace

5-15

C++11 Std Ref Description Supported
C++2011-
N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-
N3053 Defining move special member functions Yes
C++2011-
N3276 decltype and call expressions Yes

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

5 Configure Target and Compiler Options

5-16

C++14 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced
since C++14 and the corresponding Polyspace support. If your code contains non-
supported constructions, Polyspace reports a compilation error.

C++14 Std Ref Description Supported

C++2014-N3323

Implicit conversion from
class type in certain
contexts such as delete or
switch statement.

This C++14 feature allows
implicit conversion from
class type in certain
contexts. No new syntax/
keyword is introduced and
therefore does not affect
Polyspace support for C+
+14.

C++2014-N3462
More SFINAE-friendly
std::result_of Yes

C++2014-N3472
Binary literals, for instance,
0b100. Yes

C++2014-N3545

operator() in
integral_constant
template of constexpr type Yes

C++2014-N3637

Relation between
std::async and destructor
of std::future

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3638

Automatic deduction of
return type for functions
where an explicit return
type is not specified

Yes.

In some cases, Code Prover
can show compilation
errors.

C++2014-N3642

Suffixes for user-defined
literals indicating time (h,
min, s, ms, us, ns) and
strings (s) Yes

 C++14 Language Elements Supported in Polyspace

5-17

C++14 Std Ref Description Supported

C++2014-N3648

Initialization of captured
members in lambda
functions

Yes.

In some cases, during
initialization, Code Prover
can call the corresponding
constructors more number
of times than necessary.

C++2014-N3649

Generic (polymorphic)
lambda expressions:

• Using auto type-
specifier for parameter
and return type

• Conversion of generic
capture-less lambda
expressions to pointer-to-
function. Yes

C++2014-N3651 Variable templates Yes

C++2014-N3652

Declarations, conditions and
loops in constexpr
functions. Yes

C++2014-N3653

Initialization of aggregate
classes with fewer
initializers than members

For instance, this
initialization has fewer
initializers than members.
The member c is initialized
with the value 0 and d is
initialized with the value s.
struct S {
 int a;
 const char* b;
 int c;
 int d = b[a];};
S ss = { 1, "asdf" }; Yes

C++2014-N3654 std::quoted Yes

5 Configure Target and Compiler Options

5-18

C++14 Std Ref Description Supported
C++2014-N3656 std::make_unique Yes
C++2014-N3658 std::integer_sequence Yes

C++2014-N3658 std::shared_lock

No.

The use of
std::shared_lock does
not cause compilation errors
but the construct is not
semantically supported.

C++2014-N3664
Calling new and delete
operators in batches.

This C++14 feature clarifies
how successive calls to the
new operator are
implemented. No new
syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3668 std::exchange Partially supported.

C++2014-N3670

Using std::get with a data
type to get one element in
an std::tuple (provided
there is only one element of
the type in the tuple) Yes

C++2014-N3671

Overloads for std::equal,
std::mismatch and
std::is_permutation
function templates that
accept two separate ranges Yes

C++2014-N3733
Removal of std::gets
from <cstdio> Yes

C++2014-N3776
Wording change for
destructor of std::future

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

 C++14 Language Elements Supported in Polyspace

5-19

C++14 Std Ref Description Supported

C++2014-N3779

std::complex literals
representing pure imaginary
numbers with suffix i, if or
il Yes

C++2014-N3781

Use of single quotation
mark as digit separator, for
instance, 1'000. Yes

C++2014-N3786
Prohibiting "out of thin air'
results in C++14

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3910
Synchronizing behavior of
signal handlers

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3924 Discouraging use of rand()

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

C++2014-N3927 Lock-free executions

No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++14.

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-7

5 Configure Target and Compiler Options

5-20

Provide Standard Library Headers for Polyspace
Analysis

Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code.
Even if the code compiles with your compiler, you can see compilation errors with
Polyspace. If the error comes from a standard library function, it usually indicates that
Polyspace is not using your compiler headers. To work around the errors, provide the path
to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code
examples cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by
using your compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the
declaration inside stdio.h. The compilation error shows the location of your compiler
implementation of stdio.h. Your C standard library headers are all likely to be in that
folder.

• To locate the folder containing your C++ compiler system headers, compile this C++
code by using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration
inside iostream.h. The compilation error shows the location of your compiler
implementation of iostream.h. Your C++ standard library headers are all likely to be
in that folder.

After you locate the path to your compiler's header files, specify the path for the
Polyspace analysis. For C++ code, specify the paths to both your C and C++ headers.

• In the user interface (Polyspace desktop products), add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Code Prover).

 Provide Standard Library Headers for Polyspace Analysis

5-21

• At the command line, use the flag -I with the polyspace-bug-finder, polyspace-
code-prover, polyspace-bug-finder-server or polyspace-code-prover-
server command..

For more information, see -I.

See Also

More About
• “Errors from Conflicts with Polyspace Header Files” on page 11-75

5 Configure Target and Compiler Options

5-22

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build
all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• arm Keil
• Clang
• Wind River® Diab
• GNU C/C++
• IAR Embedded Workbench
• Green Hills®

• NXP CodeWarrior®

• Renesas®

• Altium® Tasking
• Texas Instruments™
• tcc - Tiny C Compiler
• Microsoft Visual C++®

If your compiler configuration is not available to Polyspace:

 Requirements for Project Creation from Build Systems

5-23

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

• Write a compiler configuration file for your compiler in a specific format. For more
information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 11-20.

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support” on page 11-14.

• If you build your code in Cygwin™, you must be using version 2.x of Cygwin for
Polyspace project creation from your build system (for instance, Cygwin version 2.10).

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr,
Polyspace might not be able to locate your file. If you encounter an error, explicitly
#include your .asfr file in the preprocessed code using the option Include (-
include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the
compiler option --alternative-sfr-file to specify an alternative sfr file. The path
to the file is typically Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in
C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag
-Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced

commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run the
command from cmd.exe in Windows. For more information, see “Check if Polyspace
Supports Build Scripts” on page 11-31.

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you
can install the full Linux Standard Base (LSB) package to allow dynamic linking. For
example, on Debian® systems, install LSB with the command apt-get install lsb.

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

5 Configure Target and Compiler Options

5-24

https://www.mathworks.com/support/?s_tid=gn_supp

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must

not require privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another
machine, Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system

macOS El Capitan (10.11) or a later macOS version, Polyspace cannot trace your build
command. Before tracing your build command, disable the SIP feature. You can
reenable this feature after tracing the build command.

• If your computer hibernates during the build process, Polyspace might not be able to
trace your build.

Note Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspace-configure

Related Examples
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

 See Also

5-25

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. For compiler-specific keywords, you must specify your
choice of compiler. If you specify keil or iar for Compiler (-compiler), the
Polyspace verification allows language extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers,
and read input captures. To deal with these requirements without using assembly
language, some microprocessor compilers define special data types such as sfr and
sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these
data types are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

The analysis then supports the Keil or IAR language extensions even if some structures,
keywords, and syntax are not part of the C99 standard.

5 Configure Target and Compiler Options

5-26

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific
keywords in your code. If a keyword is not relevant for the analysis, it is removed from
the source code during preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a
compilation error when you compile your code with Polyspace. See “Errors Related to Keil
or IAR Compiler” on page 11-55.

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata,

pdata, code, xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

 Supported Keil or IAR Language Extensions

5-27

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI® C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keyword, which Polyspace does not recognize by default.

To emulate your compiler closely, you specify the “Target and Compiler” options. If you
still get compilation errors from unrecognized keywords, you can remove or replace them
only for the purposes of verification. The option Preprocessor definitions (-D)
allows you to make simple substitutions. For complex substitutions, for instance to
remove a group of space-separated keywords such as a function attribute, use the option
Command/script to apply to preprocessed files (-post-preprocessing-
command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For
instance, follow these steps to remove the far and 0x keyword from your code (0x
precedes an absolute address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl

#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: polyspaceroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;

5 Configure Target and Compiler Options

5-28

$OUTFILE = STDOUT;

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # DON'T DELETE LINE BELOW: Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace

 Remove or Replace Keywords Before Compilation

5-29

#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of
analysis.

5 Configure Target and Compiler Options

5-30

If you run verification on this code specifying a generic compiler, you can see compilation
errors from the noreturn attribute. The code compiles using a GNU compiler.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code
analysis, you can remove it from your code for the purposes of verification. For instance,
you can use this Perl script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-
command) | Preprocessor definitions (-D)

Related Examples
• “Troubleshoot Compilation Errors”

 See Also

5-31

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the
following reasons:

• The Polyspace compiler strictly follows a C or C++ Standard (depending on your
choice of compiler). See “C/C++ Language Standard Used in Polyspace Analysis” on
page 5-7. If your compiler allows deviation from the Standard, the Polyspace
compilation using default options cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types
different from the standard types. Unless you also provide the function definition, for
efficient verification, Polyspace uses its own definitions of standard library functions,
which have the usual prototype. The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work
around the errors, you typically specify certain analysis options. In some cases, you might
have to add a few lines to your code. For instance:

• To emulate your compiler behavior more closely, you specify the “Target and
Compiler” options. If you still face compilation errors, you might have to remove or
replace certain unrecognized keywords using the option Preprocessor
definitions (-D). However, the option allows only simple substitution of a string
with another string. For more complex replacements, you might have to add #define
statements to your code.

• To avoid errors from stubbing standard library functions, you might have to #define
certain Polyspace-specific macros so that Polyspace does not use its own definition of
standard library functions.

Instead of adding these modifications to your original code, create a single
polyspace.h file that contains all modifications. Use the option Include (-include)
to force inclusion of the polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• There will be no need to modify original source files.
• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

5 Configure Target and Compiler Options

5-32

Example 5.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

See Also

More About
• “Troubleshoot Compilation Errors”

 See Also

5-33

Configure Inputs and Stubbing
Options

6

Specify External Constraints
This example shows how to specify constraints (also known as data range specifications
or DRS) on variables in your code. Polyspace uses the code that you provide to make
assumptions about items such as variable ranges and allowed buffer size for pointers.
Sometimes the assumptions are broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path comes from an assumption that is too
broad, the orange check might indicate a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values and modifiable arguments of stubbed
functions. You save the constraints as an XML file to use them for subsequent analyses. If
your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Note In Bug Finder, you can only constrain global variables. You cannot constrain
function inputs or return values of stubbed functions.

Create Constraint Template
User Interface (Desktop Products Only)
1 Open the project configuration. On the Configuration pane, select Inputs &

Stubbing.
2 To the right of Constraint setup, click the Edit button to open the Constraint

Specification window.

6 Configure Inputs and Stubbing Options

6-2

3 In the Constraint Specification dialog box, create a blank constraint template. The
template contains a list of all variables on which you can provide constraints. To

create a new template, click . The software compiles your project and
creates a template. The new template is stored in a file
Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more information,
see “External Constraints for Polyspace Analysis” on page 6-8.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run an analysis, Polyspace uses this template for extracting variable constraints.

Command Line

Use the option Constraint setup (-data-range-specifications) to specify the
constraints XML file.

To specify constraints in the XML file:

1 First, create a blank XML template. The template lists all global variables, function
inputs and modifiable arguments and return values of stubbed functions without
specifying any constraints on them.

 Specify External Constraints

6-3

To create a blank template, run an analysis only upto the compilation phase. In Bug
Finder, disable checking of defects. Use the option Find defects (-checkers). In
Code Prover, check for source compliance only. Use the argument compile for the
option Verification level (-to). After the analysis, a blank template XML
drs-template.xml is created in the results folder.

For C++ projects, to create a blank constraints template, you have to use the
argument cpp-normalize for the option Verification level (-to).

2 Edit the XML file to specify your constraints.

For examples, see:

• “Constrain Global Variable Range” on page 6-17
• “Constrain Function Inputs” on page 6-20

Create Constraint Template from Code Prover Analysis Results
You can constrain variable ranges based on their expected range in real-world
applications. For instance, if a variable represents vehicle speed, you can set a maximum
possible value. You can also constrain variable ranges only if they cause too many orange
checks from overapproximation.

A Code Prover analysis shows all global variables, function inputs and stubbed functions
that lead to orange checks from possible overapproximation. You can constrain only these
variables for a more precise analysis.

1 Open Code Prover results in the Polyspace user interface or Polyspace Access web
interface.

2 Open the Orange Sources pane. Do one of the following:

• Select an orange check. If the software can trace an orange check to a root cause,

a icon appears on the Result Details pane. Click this icon to open the
Orange Sources pane.

• In the Polyspace user interface, select Window > Show/Hide View > Orange
Sources. In the Polyspace Access web interface, select Layout > Show/Hide
View > Orange Sources.

6 Configure Inputs and Stubbing Options

6-4

You see the full list of variables (function inputs or return values of stubbed
functions) that can cause orange checks. Constrain the ranges of these variables.

In the details for individual orange checks, you often see a message similar to this:

If appropriate, applying DRS to stubbed function random_float in
example.c line 44 may remove this orange.

The message is an indication that the stubbed function is a possible source of the orange
check. You can apply external constraints on the function to enforce more precise
assumptions and possibly remove the orange check (in case it came from the broader
assumptions).

Update Existing Template
With new code submissions, you might have to specify additional constraints. You can
update an existing template to add global variables, function inputs and stubbed functions
that come from the new code submissions.

Additionally, if you remove some variables or functions from your code, constraints on
them are not applicable any more. Instead of regenerating a constraint template and
respecifying the constraints, you can update an existing template and remove the
variables that are not present in your code.

User Interface (Desktop Products Only)

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click Edit.
•

Click Edit. In the Constraint Specification dialog box, click the icon to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

 Specify External Constraints

6-5

b Specify your new constraints for any of the other variables.

Command Line

In a continuous integration workflow, you can use the constraints XML file from the
previous run. If new code submissions require additional constraints:

1 Specify constraints on variables from new code submissions in a constraints XML file.
See Create Constraint Template: Command Line on page 6-3.

2 Merge the constraints XML file with the new constraints and the constraints XML file
from the previous run.

Specify Constraints in Code
Specifying constraints outside your code allows for more precise analysis. However, you
must use the code within the specified constraints because the constraints are outside
your code. Otherwise, the results might not apply. For example, if you use function inputs
outside your specified range, a run-time error can occur on an operation even though
checks on the operation are green.

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur, the
test blocks appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Using assert statements, you can constrain your variables for the remaining
code in the same scope. For examples, see User assertion.

6 Configure Inputs and Stubbing Options

6-6

http://www.cplusplus.com/reference/cassert/assert/

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Global Variable Range” on page 6-17
• “Constrain Function Inputs” on page 6-20
• “XML File Format for Constraints” on page 6-23

 See Also

6-7

External Constraints for Polyspace Analysis
For a more precise analysis with Polyspace, you can specify external constraints on:

• Global Variables.
• User-defined Functions.

Constraints on user-defined functions do not apply to a Bug Finder analysis.
• Stubbed Functions.

Constraints on stubbed functions do not apply to a Bug Finder analysis.

For more information, see “Specify External Constraints” on page 6-2. For a partial list of
limitations, see “Constraint Specification Limitations” on page 6-15.

In the user interface of the Polyspace desktop products, you can specify the constraints
through a Constraint Specification window. The constraints are saved in an XML file
that you can reuse for other projects.

This table explains the various columns in the Constraint Specification window. If you
directly edit the constraint XML file to specify a constraint (for instance, in the Polyspace
Server products), this table also shows the correspondence between columns in the user
interface and entries in the XML file. The XML entry highlighted in bold appears in the
corresponding column of the Constraint Specification window.

6 Configure Inputs and Stubbing Options

6-8

Column Settings
Name Displays the list of variables and functions in your Project for which

you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the

project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

XML File Entry:

<function name = "funcName" ...>

<scalar name = "arg1" ...>

<pointer name = "arg2" ...>

File Displays the name of the source file containing the variable or
function.
XML File Entry:

<file name = "C:\Project1\Sources\file.c" ...>

Attributes Displays information about the variable or function.

For example, static variables display static. Uncalled functions
display unused.
XML File Entry:

<function name="funcName" attributes="unused" ...>

Data Type Displays the variable type.
XML File Entry:

<scalar name="arg1" complete_type="int32" ...>

 External Constraints for Polyspace Analysis

6-9

Column Settings
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop (C)
or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.
XML File Entry:

<function name="funcName" main_generator_called="MAIN_GENERATOR" ...>

6 Configure Inputs and Stubbing Options

6-10

Column Settings
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the
settings of the main generator options -main-generator-
writes-variables and -no-def-init-glob.

• IGNORE – Variable is not assigned to any range, even if a range is
specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode if
you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object

is allocated (Initialize Pointer and Init Allocated options).
XML File Entry:

<scalar name="arg1" init_mode="INIT" ...>

 External Constraints for Polyspace Analysis

6-11

Column Settings
Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and
maximum values of the variable type. For example, for the type long,
min and max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,
 wednesday, thursday, friday, saturday};

XML File Entry:

<scalar name="arg1" init_range="-1..0"...>

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer
(or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" initialize_pointer="Not NULL"...>

6 Configure Inputs and Stubbing Options

6-12

Column Settings
Init Allocated Applicable only to pointers. Enabled only when you specify Init

Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array.

(This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" init_pointed="MAIN_GENERATOR"...>

 External Constraints for Polyspace Analysis

6-13

Column Settings
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed
object is considered as an array).

The Init Allocated parameter specifies how many allocated objects
are actually initialized. For instance, consider this code:

void func(int *ptr) {
 assert(ptr[0]==1);
 assert(ptr[1]==1);
}

If you specify these constraints:

• ptr has Init Allocated set to MULTI and # Allocated Objects set
to 2,

• *ptr has Init Range set to 1..1,

both assertions are green. However, if you specify these constraints:

• ptr has Init Allocated set to SINGLE
• *ptr has Init Range set to 1..1,

the second assertion is orange. Only the first object that ptr points to
initialized to 1. Objects beyond the first can be potentially full range.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-15.
XML File Entry:

<pointer name="arg1" number_allocated="10"...>

Global Assert Specifies whether to perform an assert check on the variable at global
initialization, and after each assignment.
XML File Entry:

<scalar name="glob" global_assert="YES"...>

6 Configure Inputs and Stubbing Options

6-14

Column Settings
Global Assert
Range

Specifies the minimum and maximum values for the range you want
to check.
XML File Entry:

<scalar name="glob" assert_range="0..200"...>

Comment Remarks that you enter, for example, justification for your DRS
values.
XML File Entry:

<scalar name="glob" comment="Speed Range"...>

Constraint Specification Limitations
You cannot specify these constraints:

• C++ Pointers cannot be constrained:

In C++, you cannot constrain pointer arguments of functions. Functions that have
pointer arguments only do not appear in the constraint specification interface.

Because of polymorphism, a C++ pointer can point to objects of multiple classes in a
class hierarchy and can require invoking different constructors. The pre-analysis for
constraint specification cannot determine which object type to constrain or which
constructor to call.

• Constraints cannot be relations:

You cannot specify a constraint that relates the return value of a function to its inputs.
You can only specify a constant range for the constraints.

• Multiple ranges not possible:

You cannot specify multiple ranges for a constraint. For instance, you cannot specify
that a function argument has either the value -1 or a value in the range [1,100].
Instead, specify the range [-1,100] or perform two separate analyses, once with the
value -1 and once with the range [1,100].

 External Constraints for Polyspace Analysis

6-15

See Also

More About
• “Specify External Constraints” on page 6-2

6 Configure Inputs and Stubbing Options

6-16

Constrain Global Variable Range
You can impose constraints (also known as data range specifications or DRS) on the range
of a global variable and check with Code Prover whether write operations on the variable
violate the constraint. For the general workflow, see “Specify External Constraints” on
page 6-2.

User Interface (Desktop Products Only)
To constrain a global variable range and also check for violation of the constraint:

1
In your project configuration, select Inputs & Stubbing. Click the button
next to the Constraint setup field.

2
In the Constraint Specification window, click .

Under the Global Variables node, you see a list of global variables.

3 For the global variable that you want to constrain:

 Constrain Global Variable Range

6-17

• From the drop-down list in the Global Assert column, select YES.
• In the Global Assert Range column, enter the range in the format min..max.

min is the minimum value and max the maximum value for the global variable.
4

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
5 Run a verification and open the results.

For every write operation on the global variable, you see a green, orange, or red
Correctness condition check. If the check is:

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

When two or more tasks write to the same global variable, the Correctness
condition check can appear orange on all write operations to the variable even when
only one write operation takes the variable outside the Global Assert range.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML
file specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as
follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on
page 6-2. In the XML file, locate and constrain the global variables. XML tags for global
variables appear directly within the file tag without an enclosing function tag. For
instance, in this constraint XML, PowerLevel and SHR are global variables:

<file name="\\\\home\\Polyspace_Workspace\\Examples\\Code_Prover_Example
 \\sources\\tasks1.c">
 <scalar name="PowerLevel" line="26" .. global_assert="YES" assert_range="0..10"/>

6 Configure Inputs and Stubbing Options

6-18

 <scalar name="SHR" line="30" ... global_assert="NO" assert_range="" />
 <function name="Tserver" line="73" .../>
 <function name="initregulate" line="47" .../>
 <function name="orderregulate" line="35" ...>
 <scalar name="return" ... global_assert="unsupported" assert_range="unsupported" />
 </function>
 <function name="proc1" line="101" .../>
</file>

To specify a constraint on a global variable and check during a Code Prover analysis if the
constraint is violated:

1 Set the global_assert attribute of the variable's scalar tag to YES.
2 Set the assert_range attribute to a range in the form min..max, for instance,

0..10.

In the preceding example, the variable PowerLevel is constrained this way.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Function Inputs” on page 6-20

 See Also

6-19

Constrain Function Inputs
For a more precise Code Prover analysis, you can specify constraints (also known as data
range specifications or DRS) on function inputs. Code Prover checks your function
definition for run-time errors with respect to the constrained inputs. For the general
workflow, see “Specify External Constraints” on page 6-2.

For instance, for a function defined as follows, you can specify that the argument val has
values in the range [1..10]. You can also specify that the argument ptr points to a 3-
element array where each element is initialized:

int func(int val, int* ptr) {
 .
 .
}

User Interface (Desktop Products Only)
To specify constraints on function inputs:

1
In your project configuration, select Inputs & Stubbing. Click the button
for Constraint setup.

2
In the Constraint Specification window, click .

Under the User Defined Functions node, you see a list of functions whose inputs
can be constrained.

3 Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax
function_name.arg1, function_name.arg2, etc.

4 Specify your constraints on one or more of the function inputs. For more information,
see “External Constraints for Polyspace Analysis” on page 6-8.

For example, in the preceding code:

• To constrain val to the range [1..10], select INIT for Init Mode and enter
1..10 for Init Range.

6 Configure Inputs and Stubbing Options

6-20

• To specify that ptr points to a 3-element array where each element is initialized,
select MULTI for Init Allocated and enter 3 for # Allocated Objects.

5 Run verification and open the results. On the Source pane, place your cursor on the
function inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip
displays that val has values in 1..10.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML
file specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as
follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on
page 6-2. In the XML file, locate and constrain the function inputs. The function inputs
appear as a scalar or pointer tag in a function tag. The inputs are named as arg1,
arg2 and so on. For instance, for the preceding code, the XML structure for the inputs of
func appear as follows:

<function name="func" line="1" attributes="unused"
 main_generator_called="MAIN_GENERATOR" comment="">

 Constrain Function Inputs

6-21

 <scalar name="arg1" line="1" base_type="int32"
 complete_type="int32" init_mode="INIT" init_range="1..10" />
 <pointer name="arg2" line="1" complete_type="int32 *"
 init_mode="INIT" initialize_pointer="Not NULL" number_allocated="3"
 init_pointed="MULTI">
 <scalar line="1" base_type="int32" complete_type="int32"
 init_mode="MAIN_GENERATOR" init_range=""/>
 </pointer>
 <scalar name="return" line="1" base_type="int32" complete_type="int32"
 init_mode="disabled" init_range="disabled"/>
</function>

To specify a constraint on a function input, set the attributes init_mode and
init_range for scalar variables, and init_pointed and number_allocated for
pointer variables.

• To constrain val to the range [1..10], set the init_mode attribute of the tag with
name arg1 to INIT and init_range to 1..10.

• To specify that ptr points to a 3-element array where each element is initialized, set
the init_mode attribute of the tag with name arg2 to INIT, init_pointed to
MULTI and number_allocated to 3.

See Also
Constraint setup (-data-range-specifications)

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-8
• “Constrain Global Variable Range” on page 6-17

6 Configure Inputs and Stubbing Options

6-22

XML File Format for Constraints
For a more precise Polyspace analysis, you can specify constraints on global variables,
function inputs and stubbed functions. You can specify the constraints in the user
interface of the Polyspace desktop products or at the command line as an XML file. For
the general workflow, see “Specify External Constraints” on page 6-2.

This topic describes details of the constraint XML file schema. You typically require this
information only if you create a constraint XML from scratch. If you run a verification
once, the software automatically generates a template constraint file drs-
template.xml in your results folder. Instead of creating a constraint XML file from
scratch, it is easier to edit this template XML file to specify your constraints. For some
examples, see:

• “Constrain Global Variable Range” on page 6-17
• “Constrain Function Inputs” on page 6-20

For another explanation of what the XML tags mean, see “External Constraints for
Polyspace Analysis” on page 6-8.

You can also see the information in this topic and the underlying XML schema in
polyspaceroot\polyspace\drs. Here, polyspaceroot is the Polyspace installation
folder, for instance, C:\Program Files\Polyspace\R2019a.

Syntax Description — XML Elements
The constraints file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML
file.

• <file> element — Declares a file scope. Must be enclosed in the <global> element.
May enclose any variable or function declaration. Static variables must be enclosed in
a file element to avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed
in any recognized element, but cannot enclose any element. Sets init/permanent/global
asserts on variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable
declarations (including itself), to define the pointed objects. Specifies what value is
written into pointer (NULL or not), how many objects are allocated and how the
pointed objects are initialized.

 XML File Format for Constraints

6-23

• <array> element — Declares an array variable. May enclose any other variable
definition (including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class). May
enclose any other variable definition (including itself), to define the fields of the
structure.

• <function> element — Declares a function or class method scope. May enclose any
variable definition, to define the arguments and the return value of the function.
Arguments should be named arg1, arg2, …argn and the return value should be
called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification to
accept the ranges. The field line contains the line number where the variable is
declared in the source code, complete_type contains a string with the complete
variable type, and base_type is used by the GUI to compute the min and max values.
The field comment is used to add information about any node.

• (**) — The field name is mandatory for scope elements <file> and <function>
(except for function pointers). For other elements, the name must be specified when
declaring a root symbol or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes must be
separated by a space. Only the static attribute is mandatory, to avoid conflicts between
static variables having the same name. An attribute can be defined multiple times
without impact.

• (****) — This element is used only by the GUI, to determine which init modes are
allowed for the current element (according to its type). The value works as a mask,
where the following values are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are
allowed. To see how this value is computed, refer to “Valid Modes and Default Values”
on page 6-28.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account
only if init_pointed is equal to SINGLE, MULTI, SINGLE_CERTAIN_WRITE or
MULTI_CERTAIN_WRITE.

6 Configure Inputs and Stubbing Options

6-24

• (******) — SINGLE_CERTAIN_WRITE or MULTI_CERTAIN_WRITE are available for
parameters and return values of stubbed functions only if they are pointers. If the
parameter or return value is a structure and the structure has a pointer field, they are
also available for the pointer field.

<file> Element

Field Syntax
name filepath_or_filename
comment string

<scalar> Element

Field Syntax
name (**) name
line (*) line
base_type (*) intx

uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled
unsupported

 XML File Format for Constraints

6-25

Field Syntax
global_ assert YES

NO
disabled
unsupported

assert_range range
disabled
unsupported

comment(*) string

<pointer> Element

Field Syntax
Name (**) name
line (*) line
Attributes (***) volatile

extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

6 Configure Inputs and Stubbing Options

6-26

Field Syntax
init_pointed (******) MAIN_GENERATOR

NONE

SINGLE

MULTI

SINGLE_CERTAIN_WRITE

MULTI_CERTAIN_WRITE

disabled
comment string

<array> and <struct> Elements

Field Syntax
Name (**) name
line (*) line
complete_type (*) type
attributes (***) volatile

extern
static
const

comment string

<function> Element

Field Syntax
Name (**) name
line (*) line

 XML File Format for Constraints

6-27

Field Syntax
main_generator_called MAIN_GENERATOR

YES
NO
disabled

attributes (***) static
extern
unused

comment string

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Global
variables

Base
type

Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

 Main
generator
dependant

Volatile
scalar

PERMANENT disabled PERMANEN
T min..max

Extern
scalar

INIT
PERMANENT

YES
NO

 INIT
min..max

Struct Struct field Refer to field type
Array Array

element
Refer to element type

Global
variables

Pointer Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependant

Volatile
pointer

un-
supported

 un-
supported

un-
supported

6 Configure Inputs and Stubbing Options

6-28

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Extern
pointer

IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

 INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

 MAIN_
GENERATO
R
dependant

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATO
R
dependant

Pointed
function

un-
supported

un-
supported

Function
parameter
s

Userdef
functio
n

Scalar
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

 INIT
min..max

Pointer
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Other
parameter
s

Refer to parameter type

Stubbe
d
functio
n

Scalar
parameter

disabled un-
supported

 XML File Format for Constraints

6-29

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
parameter
s

disabled disabled NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

MULTI

Pointed
parameter
s

PERMANENT un-
supported

 PERMANEN
T
min..max

Pointed
const
parameter
s

disabled un-
supported

Function
return

Userdef
functio
n

Return disabled un-
supported

disabled disabled

Stubbe
d
functio
n

Scalar
return

PERMANENT un-
supported

 PERMANEN
T
min..max

6 Configure Inputs and Stubbing Options

6-30

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

PERMANEN
T
May be
NULL max
MULTI

See Also

More About
• “Specify External Constraints” on page 6-2
• “Constrain Global Variable Range” on page 6-17
• “Constrain Function Inputs” on page 6-20

 See Also

6-31

Configure Multitasking Analysis

7

Analyze Multitasking Programs in Polyspace
With Polyspace, you can analyze programs where multiple threads (tasks) run
concurrently.

In addition to regular run-time checks, the analysis looks for issues specific to concurrent
execution:

• Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
• Unprotected shared variables (Code Prover)

7 Configure Multitasking Analysis

7-2

Configure Analysis

If your code uses multitasking primitives from certain families, for instance,
pthread_create for thread creation:

• In Bug Finder, the analysis detects them and extracts your multitasking model from
the code.

• In Code Prover, you must enable this automatic detection explicitly.

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6.

Alternatively, define your multitasking model through the analysis options. In the user
interface, the options are on the Multitasking node in the Configuration pane. For
more information, see “Configuring Polyspace Multitasking Analysis Manually” on page 7-
19.

 Analyze Multitasking Programs in Polyspace

7-3

Review Analysis Results
Bug Finder

The Bug Finder analysis shows concurrency defects such as data races and deadlocks.
See “Concurrency Defects” (Polyspace Bug Finder Access).

Code Prover

7 Configure Multitasking Analysis

7-4

The Code Prover analysis exhaustively checks if shared global variables are protected
from concurrent access. See “Global Variables” (Polyspace Code Prover Access).

Review the results using the message on the Result Details pane. See a visual

representation of conflicting operations using the (graph) icon.

See Also

More About
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-19
• “Protections for Shared Variables in Multitasking Code” on page 7-24

 See Also

7-5

Auto-Detection of Thread Creation and Critical Section
in Polyspace

With Polyspace, you can analyze programs where multiple threads run concurrently.
Polyspace can analyze your multitasking code for data races, deadlocks and other
concurrency defects, if the analysis is aware of the concurrency model in your code. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. Bug Finder detects them by default. In Code Prover, you enable automatic
detection using the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 7-2.

If your thread creation function is not detected automatically:

• You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option -function-behavior-specifications.

• Otherwise, you must manually model your multitasking threads by using configuration
options. See “Configuring Polyspace Multitasking Analysis Manually” on page 7-19.

Multitasking Routines that Polyspace Can Detect
Polyspace can detect thread creation and critical sections if you use primitives from these
groups. Polyspace recognizes calls to these routines as the creation of a new thread or as
the beginning or end of a critical section.

POSIX

Thread creation: pthread_create

Critical section begins: pthread_mutex_lock

Critical section ends: pthread_mutex_unlock

VxWorks

Thread creation: taskSpawn

7 Configure Multitasking Analysis

7-6

Critical section begins: semTake

Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, in the user
interface of the Polyspace desktop products, use the VxWorks template. For more
information on templates, see “Create Project Using Configuration Template” (Polyspace
Code Prover). At the command-line, use these options:

-D1=CPU=I80386
-D2=__GNUC__=2
-D3=__OS_VXWORKS

Concurrency detection is possible only if the multitasking functions are created from an
entry point named main. If the entry point has a different name, such as
vxworks_entry_point, do one of the following:

• Provide a main function.
• Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.

Windows

Thread creation: CreateThread

Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

μC/OS II

Thread creation: OSTaskCreate

Critical section begins: OSMutexPend

Critical section ends: OSMutexPost

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-7

C++11

Thread creation: std::thread::thread

Critical section begins: std::mutex::lock

Critical section ends: std::mutex::unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files
or use polyspace-configure.

For instance, if you use std::thread for thread creation, explicitly specify the path to
the folder containing thread.h.

See also “Limitations of Automatic Thread Detection” on page 7-13.

C11

Thread creation: thrd_create

Critical section begins: mtx_lock

Critical section ends: mtx_unlock

Example of Automatic Thread Detection
The following multitasking code models five philosophers sharing five forks. The example
uses POSIX® thread creation routines and illustrates a classic example of a deadlock. Run
Bug Finder on this code to see the deadlock.

7 Configure Multitasking Analysis

7-8

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t forks[5];

void* philo1(void* args)
{
 while (1) {
 printf("Philosopher 1 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 1 takes left fork\n");
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 1 takes right fork\n");
 printf("Philosopher 1 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 1 puts down right fork\n");
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 1 puts down left fork\n");
 }
 return NULL;
}

void* philo2(void* args)
{
 while (1) {
 printf("Philosopher 2 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 2 takes left fork\n");
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 2 takes right fork\n");
 printf("Philosopher 2 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 2 puts down right fork\n");
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 2 puts down left fork\n");
 }
 return NULL;
}

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-9

void* philo3(void* args)
{
 while (1) {
 printf("Philosopher 3 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 3 takes left fork\n");
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 3 takes right fork\n");
 printf("Philosopher 3 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 3 puts down right fork\n");
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 3 puts down left fork\n");
 }
 return NULL;
}

void* philo4(void* args)
{
 while (1) {
 printf("Philosopher 4 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 4 takes left fork\n");
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 4 takes right fork\n");
 printf("Philosopher 4 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 4 puts down right fork\n");
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 4 puts down left fork\n");
 }
 return NULL;
}

void* philo5(void* args)
{
 while (1) {
 printf("Philosopher 5 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[4]);

7 Configure Multitasking Analysis

7-10

 printf("Philosopher 5 takes left fork\n");
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 5 takes right fork\n");
 printf("Philosopher 5 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 5 puts down right fork\n");
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 5 puts down left fork\n");
 }
 return NULL;
}

int main(void)
{
 pthread_t ph[5];
 pthread_create(&ph[0], NULL, philo1, NULL);
 pthread_create(&ph[1], NULL, philo2, NULL);
 pthread_create(&ph[2], NULL, philo3, NULL);
 pthread_create(&ph[3], NULL, philo4, NULL);
 pthread_create(&ph[4], NULL, philo5, NULL);

 pthread_join(ph[0], NULL);
 pthread_join(ph[1], NULL);
 pthread_join(ph[2], NULL);
 pthread_join(ph[3], NULL);
 pthread_join(ph[4], NULL);
 return 1;
}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function
requires two pthread_mutex_t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread_mutex_t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread_mutex_t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-11

Naming Convention for Automatically Detected Threads
If you use a function such as pthread_create() to create new threads (tasks), each
thread is associated with an unique identifier. For instance, in this example, two threads
are created with identifiers id1 and id2.

pthread_t* id1, id2;

void main()
{
 pthread_create(id1, NULL, start_routine, NULL);
 pthread_create(id2, NULL, start_routine, NULL);
}

If a data race occurs between the threads, the analysis can detect it. When displaying the
results, the threads are indicated as task_id, where id is the identifier associated with
the thread. In the preceding example, the threads are identified as task_id1 and
task_id2.

If a thread identifiers is:

• Local to a function, the thread name shows the function.

For instance, the thread created below appears as task_f:id

void f(void)
{
 pthread_t* id;
 pthread_create(id, NULL, start_routine, NULL);
}

• A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task_a#id

struct {pthread_t* id; int x;} a;
pthread_create(a.id,NULL,start_routine,NULL);

• An array member, the thread name shows the array.

For instance, the thread created below appears as task_tab[1].

pthread_t* tab[10];
pthread_create(tab[1],NULL,start_routine,NULL);

7 Configure Multitasking Analysis

7-12

Limitations of Automatic Thread Detection
The multitasking model extracted by Polyspace does not include some features. Polyspace
cannot model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join and thrd_join.

Polyspace replaces pthread_exit and thrd_exit by a standard exit.
• (Polyspace Bug Finder only) Creation of multiple threads through multiple calls to the

same function with different pointer arguments.

Example

In this example, Polyspace considers that only one thread is created.

pthread_t id1, id2;
void start(pthread_t* id)
{
 pthread_create(id, NULL, start_routine, NULL);
}
void main()
{
 start(&id1);
 start(&id2);
}

• (Polyspace Code Prover only) Shared local variables — Only global variables are
considered shared. If a local variable is accessed by multiple threads, the analysis
does not take into account the shared nature of the variable.

Example

In this example, the analysis does not take into account that the local variable x can be
accessed by both task1 and task2 (after the new thread is created).

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-13

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 int x;
 x = 2;
 pthread_t id;
 (void)pthread_create(&id, NULL, task2, (void*) &x);
 /* x (local var) passed to task2 */
 x = 3 ;

 /* Unknown thread priority means x = 1 OR x = 3.*/
 /* However, the analysis considers x = 3 */
 /* Assertion below is green */
 assert(x == 3);
}

int main(void)
{
 task1();
 return 0;
}

• (Polyspace Code Prover only) Shared dynamic memory — Only global variables are
considered shared. If a dynamically allocated memory region is accessed by multiple
threads, the analysis does not take into account its shared nature.

Example

In this example, the analysis does not take into account that lx points to a shared
memory region. The region can be accessed by both task1 and task2 (after the new
thread is created). The Code Prover analysis also reports lx as a non-shared variable.

7 Configure Multitasking Analysis

7-14

#include <pthread.h>
#include <stdlib.h>

static int* lx;

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 pthread_t id;
 lx = (int*)malloc(sizeof(int));

 if (lx == NULL) exit(1);

 (void)pthread_create(&id, NULL, task2, (void*) lx);

 *lx = 3 ;

 /* Unknown thread priority means *lx = 1 OR *lx = 3.*/
 /* However, the analysis considers *lx = 3 */
 /* Assertion below is green */
 assert(*lx == 3);
}

int main(void)
{
 task1();
 return 0;
}

• Number of tasks created with CreateThread when threadId is set to NULL— When
you create multiple threads that execute the same function, if the last argument of
CreateThread is NULL, Polyspace only detects one instance of this function, or task.

Example

In this example, Polyspace detects only one instance of thread_function1(), but 10
instances of thread_function2().

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-15

#include <windows.h>

#define MAX_LOOP_THREADS 10

DWORD WINAPI thread_function1(LPVOID data) {}
DWORD WINAPI thread_function2(LPVOID data) {}

HANDLE hds1[MAX_LOOP_THREADS];
HANDLE hds2[MAX_LOOP_THREADS];
DWORD threadId[MAX_LOOP_THREADS];

int main(void)
{
 for (int i = 0; i < MAX_LOOP_THREADS; i++) {

 hds1[i] = CreateThread(NULL, 0, thread_function1, NULL, 0, NULL);
 hds2[i] = CreateThread(NULL, 0, thread_function2, NULL, 0, &threadId[i]);
 }

 return 0;
}

• (C++11 only) If you use lambda expressions as start functions during thread creation,
Polyspace does not detect shared variables in the lambda expressions.

Example

In this example, Polyspace does not detect that the variable y used in the lambda
expressions is shared between two threads. As a result, Bug Finder, for instance, does
not show a Data race defect.

#include <thread>
int y;
int main() {
 std::thread t1([] {y++;});
 std::thread t2([] {y++;});
 t1.join();
 t2.join();
 return 0;
}

• (C++11 threads with Polyspace Code Prover only) String literals as thread function
argument — Code Prover shows a red Illegally dereferenced pointer error if the

7 Configure Multitasking Analysis

7-16

thread function has an std::string& parameter and you pass a string literal
argument.

Example

In this example, the thread function foo has an std::string& parameter. When
starting a thread, a string literal is passed as argument to this function, which
undergoes an implicit conversion to std::string type. Code Prover loses track of
the original string literal in this conversion. Therefore, a dashed red underline appears
on operator<< in the body of foo and a red Illegally dereferenced pointer check
in the body of operator<<.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::thread t1(foo,"foo_arg");
}

To work around this issue, assign the string literal to a temporary variable and pass
the variable as argument to the thread function.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::string str = "foo_arg";
 std::thread t1(foo, str);
}

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-17

See Also
-function-behavior-specifications | Enable automatic concurrency
detection for Code Prover (-enable-concurrency-detection)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-19

7 Configure Multitasking Analysis

7-18

Configuring Polyspace Multitasking Analysis Manually
With Polyspace, you can analyze programs where multiple threads run concurrently. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. See “Auto-Detection of Thread Creation and Critical Section in Polyspace”
on page 7-6.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 7-2.

Specify Options for Multitasking Analysis
Use these options to specify cyclic tasks, interrupts and protections for shared variables.
In the Polyspace user interface, the options are on the Multitasking node in the
Configuration pane.

• Entry points (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.
• Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic

intervals.
• Interrupts (-interrupts): Specify functions that can run asynchronously.
• Disabling all interrupts (-routine-disable-interrupts -routine-

enable-interrupts): Specify functions that disable and reenable interrupts (Bug
Finder only).

• Critical section details (-critical-section-begin -critical-
section-end): Specify functions that begin and end critical sections.

• Temporally exclusive tasks (-temporal-exclusions-file): Specify
groups of functions that are temporally exclusive.

• -preemptable-interrupts: Specify functions that have lower priority than
interrupts, but higher priority than tasks (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

 Configuring Polyspace Multitasking Analysis Manually

7-19

• -non-preemptable-tasks: Specify functions that have higher priority than tasks,
but lower priority than interrupts (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Adapt Code for Code Prover Multitasking Analysis
The multitasking analysis in Code Prover is more exhaustive about finding potentially
unprotected shared variables and therefore follows a strict model.

Tasks and interrupts must be void-void functions.

Functions that you specify as tasks and interrupts must have the prototype:

void func(void);

Suppose you want to specify a function func that takes int arguments:

void func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this
wrapper function as a task or interrupt.

void func_wrapper() {
 volatile int arg;
 func(arg);
}

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If
the main function contains an infinite loop or run-time error, the tasks and interrupts are
not analyzed. If you see that there are no checks in your tasks and interrupts, look for a
token underlined in dashed red to identify the issue in the main function. See “Reasons
for Unchecked Code” (Polyspace Code Prover).

Suppose you want to specify the main function as a cyclic task.

void performTask1Cycle(void);
void performTask2Cycle(void);

7 Configure Multitasking Analysis

7-20

void main() {
 while(1) {
 performTask1Cycle();
 }
}

void task2() {
 while(1) {
 performTask2Cycle();
 }
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {
}
void task1() {
 while(1) {
 performTask1Cycle();
 }
}

#else
void main() {
 while(1) {
 performTask1Cycle();
 }
}
#endif

The replacement defines an empty main and places the content of main into another
function task1 if a macro POLYSPACE is defined. Define the macro POLYSPACE using the
option Preprocessor definitions (-D) and specify task1 for the option Tasks (-
entry-points).

This assumption does not apply to automatically detected threads. For instance, a main
function can create threads using pthread_create.

All tasks and interrupts can interrupt each other.

 Configuring Polyspace Multitasking Analysis Manually

7-21

The Bug Finder analysis considers priorities of tasks. A function that you specify as a task
cannot interrupt a function that you specify as an interrupt because an interrupt has
higher priority.

The Code Prover analysis considers that all tasks and interrupts can interrupt each other.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of
times in any sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows
an overflow on the operation var+=2.

void reset(void) {
 var=0;
}

void inc(void) {
 var+=2;
}

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed five times. Write a wrapper function that implements this sequence. Specify this
new function as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 inc();
 inc();
 inc();
 inc();
 inc();
 reset();
 }
 }

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed zero to five times. Write a wrapper function that implements this sequence.
Specify this new function as a cyclic task instead of reset and inc.

7 Configure Multitasking Analysis

7-22

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 reset();
 }
 }

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-6

 See Also

7-23

Protections for Shared Variables in Multitasking Code
If your code is intended for multitasking, tasks in your code can access a common shared
variable. To prevent data races, you can protect read and write operations on the
variable. This topic shows the various protection mechanisms that Polyspace can
recognize.

Detect Unprotected Access

You can detect an unprotected access using either Bug Finder or Code Prover. Code
Prover is more exhaustive and proves if a shared variable is protected from concurrent
access.

• Bug Finder detects an unprotected access using the result Data race. See Data
race.

• Code Prover detects an unprotected access using the result Shared unprotected
global variable. See Potentially unprotected variable.

Suppose you analyze this code, specifying signal_handler_1 and signal_handler_2
as cyclic tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared_var;

7 Configure Multitasking Analysis

7-24

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void signal_handler_1(void) {
 reset();
 inc();
 inc();
}

void signal_handler_2(void) {
 shared_var = INT_MAX;
}

 void main() {
}

Bug Finder shows a data race on shared_var. Code Prover shows that shared_var is a
potentially unprotected shared variable. Code Prover also shows that the operation
shared_var += 2 can overflow. The overflow occurs if the call to inc in
signal_handler_1 immediately follows the operation shared_var = INT_MAX in
signal_handler_2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared_var are in the
same critical section. Use the functions take_semaphore and give_semaphore to
begin and end the critical sections. To specify these functions that begin and end critical
sections, use the analysis options Critical section details (-critical-
section-begin -critical-section-end).

#include <limits.h>
int shared_var;

void inc() {

 Protections for Shared Variables in Multitasking Code

7-25

 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal_handler_1() {
 /* Begin critical section */
 take_semaphore();
 reset();
 inc();
 inc();
 /* End critical section */
 give_semaphore();

}

void signal_handler_2() {
 /* Begin critical section */
 take_semaphore();
 shared_var = INT_MAX;
 /* End critical section */
 give_semaphore();

}

void main() {
}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

You can also use primitives such as the POSIX functions pthread_mutex_lock and
pthread_mutex_unlock to begin and end critical sections. For a list of primitives that
Polyspace can detect automatically, see “Auto-Detection of Thread Creation and Critical
Section in Polyspace” on page 7-6.

7 Configure Multitasking Analysis

7-26

Protect Using Temporally Exclusive Tasks
Another possible solution is to specify a group of tasks as temporally exclusive.
Temporally exclusive tasks cannot interrupt each other.

In the preceding example, specify that signal_handler_1 and signal_handler_2 are
temporally exclusive. Use the option Temporally exclusive tasks (-temporal-
exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal_handler_1 is an interrupt. Retain
signal_handler_2 as a cyclic task. Use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

• The operation shared_var = INT_MAX in signal_handler_2 is atomic. Therefore,
the operations in signal_handler_1 cannot interrupt it.

• The operations in signal_handler_1 cannot be interrupted by the operation in
signal_handler_2 because signal_handler_1 has higher priority.

You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

A task with higher priority is atomic with respect to a task with lower priority. Note that
the checker Data race including atomic operations ignores the difference in

 Protections for Shared Variables in Multitasking Code

7-27

priorities and continues to show the data race. See also “Define Preemptable Interrupts
and Nonpreemptable Tasks” (Polyspace Bug Finder Server).

Code Prover does not consider priorities of tasks. Therefore, Code Prover still shows
shared_var as a potentially unprotected global variable.

Protect By Disabling Interrupts
In a Bug Finder analysis, you can protect a group of operations by disabling all interrupts.
Use the option Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic until
you call another routine to reenable interrupts. The operations are atomic with respect to
operations in all other tasks.

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Define Atomic Operations in Multitasking Code” on page 7-29

7 Configure Multitasking Analysis

7-28

Define Atomic Operations in Multitasking Code
In code with multiple threads, you can use Polyspace Bug Finder to detect data races or
Polyspace Code Prover to list potentially unprotected shared variables.

To determine if a variable shared between multiple threads is protected against
concurrent access, Polyspace checks if the operations on the variable are atomic.

Nonatomic Operations
If an operation is nonatomic, Polyspace considers that the operation involves multiple
steps. These steps do not need to occur together and can be interrupted by operations in
other threads.

For instance, consider these two operations in two different threads:

• Thread 1: var++;

This operation is nonatomic because it takes place in three steps: reading var,
incrementing var, and writing back var.

• Thread 2: var = 0;

This operation is atomic if the size of var is less than the word size on the target. See
details below for how Polyspace determines the word size.

If the two operations are not protected (by using, for instance, critical sections), the
operation in the second thread can interrupt the operation in the first thread. If the
interruption happens after var is incremented in the first thread but before the
incremented value is written back, you can see unexpected results.

What Polyspace Considers as Nonatomic
Code Prover considers all operations as nonatomic unless you protect them, for instance,
by using critical sections. See “Define Specific Operations as Atomic” on page 7-30.

Bug Finder considers an operation as nonatomic if it can translate into more than one
machine instruction. For instance:

 Define Atomic Operations in Multitasking Code

7-29

• The operation can involve both a read and write operation. For example, var++
involves reading the value of var, increasing the value by one and writing the
increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long var1, var2;
var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use i386 as your Target processor type, the
Pointer size is 32 bits and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one long long or double variable to another as
nonatomic.

See also Target processor type (-target).
• The operation can involve writing the return value of a function call to a shared

variable. For example, the operation x=func() involves calling func and writing the
return value of func to x.

To detect data races where at least one of the two interrupting operations is nonatomic,
enable the Bug Finder checker Data race. To remove this constraint on the checker,
enable Data race including atomic operations.

Define Specific Operations as Atomic
You might want to define a group of operations as atomic. This group of operations cannot
be interrupted by operations in another thread or task.

Use one of these techniques:

• Critical sections

Protect a group of operations with critical sections.

A critical section begins and ends with calls to specific functions. You can use a
predefined set of primitives to begin or end critical sections, or use your own
functions.

7 Configure Multitasking Analysis

7-30

A group of operations in a critical section are atomic with respect to another group of
operations that are in the same critical section (that is, having the same beginning and
ending function).

Specify critical sections using the option Critical section details (-
critical-section-begin -critical-section-end).

• Temporally exclusive tasks

Protect a group of operations by specifying certain tasks as temporally exclusive.

If a group of tasks are temporally exclusive, all operations in one task are atomic with
respect to operations in the other tasks.

Specify temporal exclusion using the option Temporally exclusive tasks (-
temporal-exclusions-file).

• Task priorities (Bug Finder only)

Protect a group of operations by specifying that certain tasks have higher priorities.
For instance, interrupts have higher priorities over cyclic tasks.

You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

All operations in a task with higher priority are atomic with respect to operations in
tasks with lower priorities. See also “Define Preemptable Interrupts and
Nonpreemptable Tasks” (Polyspace Bug Finder Server).

• Routine disabling interrupts (Bug Finder only)

Protect a group of operations by disabling all interrupts. Use the option Disabling
all interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic
until you call another routine to reenable interrupts. The operations are atomic with
respect to operations in all other tasks.

 Define Atomic Operations in Multitasking Code

7-31

For a tutorial, see “Protections for Shared Variables in Multitasking Code” on page 7-24.

See Also
Critical section details (-critical-section-begin -critical-section-
end) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Temporally exclusive tasks (-temporal-exclusions-file)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-24

7 Configure Multitasking Analysis

7-32

Define Preemptable Interrupts and Nonpreemptable
Tasks

Bug Finder detects data races between concurrent tasks. Using Bug Finder analysis
options, you can fix data race detection by specifying that certain tasks have higher
priorities over others. A task with higher priority is atomic with respect to tasks with
lower priority and cannot be interrupted by those tasks.

Emulating Task Priorities
You can specify up to four different priorities with these options (with highest priority
listed first):

• Interrupts (nonpreemptable): Use option Interrupts (-interrupts).
• Interrupts (preemptable): Use options Interrupts (-interrupts) and -

preemptable-interrupts.
• Cyclic tasks (nonpreemptable): Use options Cyclic tasks (-cyclic-tasks) and -

non-preemptable-tasks.

You can also define preemptable noncyclic tasks with the option Entry points (-
entry-points) and -non-preemptable-tasks.

• Cyclic tasks (preemptable): Use option Cyclic tasks (-cyclic-tasks).

You can also define noncyclic tasks with the option Entry points (-entry-
points).

For instance, interrupts have the highest priority and cannot be preempted by other
tasks. To define a class of interrupts that can be preempted, lower their priority by
making them preemptable.

Examples of Task Priorities
Consider this example with three tasks. A variable var is shared between the two tasks
task1 and task2 without any protection such as a critical section. Depending on the
priorities of task1 and task2, Bug Finder shows a data race. The third task is not

 Define Preemptable Interrupts and Nonpreemptable Tasks

7-33

relevant for the example (and is added only to include a critical section, otherwise data
race detection is disabled).

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var++;
}

void task2(void) {
 var=0;
}

void task3(void){
 begin_critical_section();
 /* Some atomic operation */
 end_critical_section();
}

Adjust the priorities of task1 and task2 and see whether a data race is detected. For
instance:

1 Configure these multitasking options:

• Interrupts (-interrupts): Specify task1 and task2 as interrupts.
• Cyclic tasks (-cyclic-tasks): Specify task3 as a cyclic task.
• Critical section details (-critical-section-begin -critical-

section-end): Specify begin_critical_section as a function beginning a
critical section and end_critical_section as a function ending a critical
section.

2 Run Bug Finder.

You do not see a data race. Since task1 and task2 are nonpreemptable interrupts,
the shared variable cannot be accessed concurrently.

3 Change task1 to a preemptable interrupt by using the option -preemptable-
interrupts.

4 Run Bug Finder again. You now see a data race on the shared variable var.

7 Configure Multitasking Analysis

7-34

Further Explorations
Modify this example in the following ways and see the effect of the modification:

• Change the priorities of task1 and task2.

For instance, you can leave task1 as a nonpreemptable interrupt but change task2
to a preemptable interrupt by using the option -preemptable-interrupts.

The data race disappears. The reason is:

• task1 has higher priority and cannot be interrupted by task2.
• The operation in task2 is atomic and cannot be interrupted by task1.

• Enable the checker Data race including atomic operations (not enabled by
default). Use the option Find defects (-checkers).

You see the data race again. The checker considers all operations as potentially
nonatomic and the operation in task2 can now be interrupted by the higher priority
operation in task1.

Try other modifications to the analysis options and see the result of the checkers.

See Also
Polyspace Analysis Options
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts)

Polyspace Results
Data race | Data race including atomic operations

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-24
• “Define Atomic Operations in Multitasking Code” on page 7-29

 See Also

7-35

Define Critical Sections with Functions That Take
Arguments

When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock and unlock function.

lock();
/* Critical section code */
unlock();

A group of operations in a critical section are atomic with respect to another group of
operations that are in the same critical section (that is, having the same lock and unlock
function). See also “Define Atomic Operations in Multitasking Code” on page 7-29.

Polyspace Assumption on Functions Defining Critical Sections
Polyspace ignores arguments to functions that begin and end critical sections.

For instance, Polyspace treats the two code sections below as the same critical section if
you specify my_task_1 and my_task_2 as entry points, my_lock as the lock function
and my_unlock as the unlock function.

int shared_var;

void my_lock(int);
void my_unlock(int);

void my_task_1() {
 my_lock(1);
 /* Critical section code */
 shared_var=0;
 my_unlock(1);
}

void my_task_2() {
 my_lock(2);
 /* Critical section code */
 shared_var++;
 my_unlock(2);
}

7 Configure Multitasking Analysis

7-36

As a result, the analysis considers that these two sections are protected from interrupting
each other even though they might not be protected. For instance, Bug Finder does not
detect the data race on shared_var.

Often, the function arguments can be determined only at run time. Since Polyspace
models the critical sections prior to the static analysis and run-time error checking phase,
the analysis cannot determine if the function arguments are different and ignores the
arguments.

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments
When the arguments to the functions defining critical sections are compile-time
constants, you can adapt the analysis to work around the Polyspace assumption.

For instance, you can use Polyspace analysis options so that the code in the preceding
example appears to Polyspace as shown here.

int shared_var;

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

void my_task_1() {
 my_lock_1();
 /* Critical section code */
 shared_var=0;
 my_unlock_1();
}

void my_task_2() {
 my_lock_2();
 /* Critical section code */
 shared_var++;
 my_unlock_2();
}

If you then specify my_lock_1 and my_lock_2 as the lock functions and my_unlock_1
and my_unlock_2 as the unlock functions, the analysis recognizes the two sections of
code as part of different critical sections. For instance, Bug Finder detects a data race on
shared_var.

 Define Critical Sections with Functions That Take Arguments

7-37

To adapt the analysis for lock and unlock functions that take compile-time constants as
arguments:

1 In a header file common_polyspace_include.h, convert the function arguments
into extensions of the function name with #define-s. In addition, provide a
declaration for the new functions.

For instance, for the preceding example, use these #define-s and declarations:

#define my_lock(X) my_lock_##X()
#define my_unlock(X) my_unlock_##X()

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

2 Specify the file name common_polyspace_include.h as argument for the option
Include (-include).

The analysis considers this header file as #include-d in all source files that are
analyzed.

3 Specify the new function names as functions beginning and ending critical sections.
Use the options Critical section details (-critical-section-begin -
critical-section-end).

See Also
Critical section details (-critical-section-begin -critical-section-
end)

More About
• “Protections for Shared Variables in Multitasking Code” on page 7-24

7 Configure Multitasking Analysis

7-38

Configure Coding Rules Checking
and Code Metrics Computation

8

Check for Coding Standard Violations
With Polyspace, you can check your C/C++ code for violations of coding rules such as
MISRA C:2012 rules. Adhering to coding rules can reduce the number of defects and
improve the quality of your code.

Polyspace can detect the violations of these rules:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO®/IEC TS 17961 (Bug Finder only)

Configure Coding Rules Checking

8 Configure Coding Rules Checking and Code Metrics Computation

8-2

Specify Standard and Predefined Checker Subsets

Specify the coding rules through Polyspace analysis options. When you run Bug Finder or
Code Prover, the analysis looks for coding rule violations in addition to other checks. You
can disable the other checks and look for coding rule violations only.

In the Polyspace user interface (desktop products), the options are on the Configuration
pane under the Coding Standards & Code Metrics node.

For C code, use one of these options:

• Check MISRA C:2004 (-misra2)

For generated code, enable the option specific to generated code.
• Check MISRA C:2012 (-misra3)

For generated code, enable the option specific to generated code.

 Check for Coding Standard Violations

8-3

• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)

For C++ code, use one of these options:

• Check MISRA C++ rules (-misra-cpp)
• Check JSF C++ rules (-jsf-coding-rules)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check SEI CERT-C++ (-cert-cpp)

You can specify a predefined subset of rules, for instance, mandatory for MISRA C: 2012.
These subsets are typically defined by the standard.

You can also define naming conventions for identifiers using regular expressions. See
“Create Custom Coding Rules” on page 8-56.

Customize Checker Subsets

Instead of the predefined subsets, you can specify your own subset of rules from a coding
standard.

User Interface (Desktop Products Only)

1 Select the coding standard. From the drop-down list for the subset of rules, select
from-file. Click Edit.

2 In the Findings selection window, the coding standard is highlighted on the left
pane. On the right pane, select the rules that you want to include in your analysis.

8 Configure Coding Rules Checking and Code Metrics Computation

8-4

When you save the rule selections, the configuration is saved in an XML file that you can
reuse for multiple analyses. The same file contains rules selected for all coding standards.
You can reuse this file across multiple projects to enforce common coding standards in a
team or organization. To reuse this file in another project in the Polyspace user interface:

• Choose a coding standard in the project configuration. From the drop-down list for the
subset of rules, select from-file.

 Check for Coding Standard Violations

8-5

• Click Edit and browse to the file location. Alternatively, enter the file name as
argument for the option Set checkers by file (-checkers-selection-file).

Command Line

With the Polyspace desktop products, you can create a coding standard XML file in the
user interface and then use this file for command-line analysis.

With the Polyspace server products, you have to create a coding standard XML from
scratch. Use the file StandardsConfiguration.xml in polyspaceserverroot
\polyspace\examples\cxx\Bug_Finder_Example\sources as a template and turn
on rules using entries in the XML file. Here, polyspaceserverroot is the root
installation folder for the Polyspace Server products, for instance, C:\Program Files
\Polyspace Server\R2019a.

For instance, to turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
•
• “Custom Coding Rules” (Polyspace Code Prover Access)
• “JSF C++ Rules” (Polyspace Code Prover Access)
• “MISRA C:2004 Rules” (Polyspace Code Prover Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Code Prover Access)

8 Configure Coding Rules Checking and Code Metrics Computation

8-6

• “MISRA C++:2008 Rules” (Polyspace Code Prover Access)

Note The XML format of the checker configuration file can change in future releases.

Check for Coding Standards Only

To check for coding standards only:

• In Bug Finder, disable checking of defects. Use the option Find defects (-
checkers).

• In Code Prover, check for source compliance only. Use the option Verification
level (-to).

These rules are checked in the later stages of a Code Prover analysis: MISRA C:2004
rules 9.1, 13.7, and 21.1, and MISRA C:2012 rules 2.2, 9.1, 14.3, and 18.1. If you stop
Code Prover at source compliance checking, the analysis might not find all violations
of these rules. You can also see a difference in results based on your choice for the
option Verification level (-to). For example, it is possible that Code Prover
suspects in the first pass that a variable may be uninitialized but proves in the second
pass that the variable is initialized. In that case, you see a violation of MISRA C:2012
Rule 9.1 in the first pass but not in the second pass.

Review Coding Rule Violations

 Check for Coding Standard Violations

8-7

After analysis, you see the coding standard violations on the Results List pane. Select a
violation to see further details on the Result Details pane and the source code on the
Source pane.

8 Configure Coding Rules Checking and Code Metrics Computation

8-8

Violations of coding standards are indicated in the source code with the icon.

For further steps, see “Review Results in Polyspace Code Prover Access” (Polyspace Code
Prover Access).

Generate Reports
You can generate reports using templates that are explicitly defined for coding standards.
Use the CodingStandards template. This template:

• Reports only coding standard violations in your analysis results, and omits other types
of results such as defects, run-time errors or code metrics.

• Creates a separate chapter in the report for each coding standard. the chapter
provides an overview of all violations of the standard and then lists each violation.

To specify a report template, use the option Bug Finder and Code Prover report
(-report-template).

See Also

More About
• “Interpret Polyspace Code Prover Access Results” (Polyspace Code Prover Access)

 See Also

8-9

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and
definitions. If you follow these practices, you are less likely to have conflicting
declarations or to unintentionally modify variables.

If you do not follow these practices during coding, your code might require major changes
later to be MISRA C-compliant. You might have too many MISRA C violations. Sometimes,
in fixing a violation, you might violate another rule. Instead, keep these rules in mind
when coding. Use the MISRA C:2012 checker to spot any issues that you might have
missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or

function once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include
the header file in all the source files where you need the object. In one of those source
files, define the object. For instance:

8 Configure Coding Rules Checking and Code Metrics Computation

8-10

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header
file in all the source files where you need the function. In one of those source files,
define the function.

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4,
MISRA C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the
object or function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For
instance, this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.8.

• If you want to use an object in one function only, declare the object in the
function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

 Avoid Violations of MISRA C 2012 Rules 8.x

8-11

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.9.

• If you want to inline a function, declare and define the function with the
static specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit
specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration
constant explicitly, but after that, use either implicit or explicit specifications. For
instance, avoid this type of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.

8 Configure Coding Rules Checking and Code Metrics Computation

8-12

• When declaring pointers, point to a const-qualified type unless you want to
use the pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for
modifying the pointed object. For instance, in this example, ptr is not used to modify
the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

 Avoid Violations of MISRA C 2012 Rules 8.x

8-13

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 8-14
“Rules in SQO-Subset2” on page 8-15

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not be
used.

13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.

8 Configure Coding Rules Checking and Code Metrics Computation

8-14

Rule number Description
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function

 Software Quality Objective Subsets (C:2004)

8-15

Rule number Description
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the

nonzero initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

8 Configure Coding Rules Checking and Code Metrics Computation

8-16

Rule number Description
12.12 The underlying bit representations of floating-point values shall not

be used.
13.1 Assignment operators shall not be used in expressions that yield

Boolean values
13.2 Tests of a value against zero should be made explicit, unless the

operand is effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or

inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
13.6 Numeric variables being used within a “for” loop for iteration

counting should not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

 Software Quality Objective Subsets (C:2004)

8-17

Rule number Description
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

8 Configure Coding Rules Checking and Code Metrics Computation

8-18

See Also
Check MISRA C:2004 (-misra2)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-19

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 8-20
“Rules in SQO-Subset2” on page 8-21

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-20

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

 Software Quality Objective Subsets (AC AGC)

8-21

Rule number Description
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter

shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

8 Configure Coding Rules Checking and Code Metrics Computation

8-22

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

See Also
Check MISRA AC AGC (-misra-ac-agc)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-23

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 8-24
“Guidelines in SQO-Subset2” on page 8-25

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can
select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type

8 Configure Coding Rules Checking and Code Metrics Computation

8-24

Rule Description
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified

 Software Quality Objective Subsets (C:2012)

8-25

Rule Description
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type

pointed to by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end

8 Configure Coding Rules Checking and Code Metrics Computation

8-26

Rule Description
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a

switch statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

 Software Quality Objective Subsets (C:2012)

8-27

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

8 Configure Coding Rules Checking and Code Metrics Computation

8-28

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 8-29
“SQO Subset 2 – Indirect Impact on Selectivity” on page 8-31

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of
unproven results in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an

outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.

 Software Quality Objective Subsets (C++)

8-29

MISRA C++ Rule Description
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

8 Configure Coding Rules Checking and Code Metrics Computation

8-30

MISRA C++ Rule Description
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of
the same function (in other translation units) shall be declared with the same
set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the
number of unproven results in Polyspace Code Prover. The following set of coding rules
may help to address design issues in your code. The SQO-subset2 option checks the
rules in SQO-subset1 and SQO-subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in

an outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the

static storage class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that

minimizes its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

 Software Quality Objective Subsets (C++)

8-31

MISRA C++ Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the
equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement
shall have type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where

they point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.

8 Configure Coding Rules Checking and Code Metrics Computation

8-32

MISRA C++ Rule Description
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.

 Software Quality Objective Subsets (C++)

8-33

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit

return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.

8 Configure Coding Rules Checking and Code Metrics Computation

8-34

MISRA C++ Rule Description
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

See Also
Check MISRA C++:2008 (-misra-cpp)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-35

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis. The subsets are available with the options Check MISRA C:2004 (-misra2),
Check MISRA AC AGC (-misra-ac-agc), and Check MISRA C:2012 (-misra3).

Argument Purpose
single-unit-
rules

Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the compilation phase.

system-
decidable-rules

Check rules in the single-unit-rules subset and some rules
that apply to the collective set of program files. The additional rules
are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the linking phase.

See also “Check for Coding Standard Violations” on page 8-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO 9899:1990 "Programming languages - C",

amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

8 Configure Coding Rules Checking and Code Metrics Computation

8-36

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be

used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more

than 31 characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier

in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

 Coding Rule Subsets Checked Early in Analysis

8-37

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character

values.
6.2 Signed and unsigned char type shall be used only for the storage and use of

numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the

basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be

used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-38

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible

at both the function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be

explicitly stated.
8.3 For each function parameter the type given in the declaration and definition

shall be identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be

compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

8-39

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a
different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4 The value of a complex expression of float type may only be cast to narrower
floating type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

8 Configure Coding Rules Checking and Code Metrics Computation

8-40

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a

different pointer to object type.
11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions.
12.3 The sizeof operator should not be used on expressions that contain side

effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression

 Coding Rule Subsets Checked Early in Analysis

8-41

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean

values.
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used

for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The

else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

8 Configure Coding Rules Checking and Code Metrics Computation

8-42

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch

clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4* The identifiers used in the declaration and definition of a function shall be

identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of

parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

 Coding Rule Subsets Checked Early in Analysis

8-43

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-44

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors

directives or comments.
19.2 Nonstandard characters should not occur in header file names in #include

directives.
19.3 The #include directive shall be followed by either a <filename> or "filename"

sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two

standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file

being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

 Coding Rule Subsets Checked Early in Analysis

8-45

Rule Description
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be

defined, redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be

reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall

not be used.
20.11 The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

8 Configure Coding Rules Checking and Code Metrics Computation

8-46

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and

constraints, and shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

 Coding Rule Subsets Checked Early in Analysis

8-47

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in

an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be

unique.
5.9* Identifiers that define objects or functions with internal linkage should be

unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented

in an unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is

"pointer to const-qualified char".

8 Configure Coding Rules Checking and Code Metrics Computation

8-48

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type

qualifiers.
8.4 A compatible declaration shall be visible when an object or function with

external linkage is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are

referenced in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects

and functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a

single function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of

the array shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

8-49

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in

addition and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are

performed shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential

type.
10.6 The value of a composite expression shall not be assigned to an object with

wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the

usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

8 Configure Coding Rules Checking and Code Metrics Computation

8-50

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any

other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type

and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to

a different object type.
11.4 A conversion should not be performed between a pointer to object and an

integer type.
11.5 A conversion should not be performed from pointer to void into pointer to

object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed

to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer

constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-

around.

 Coding Rule Subsets Checked Early in Analysis

8-51

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator

should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which

has potential side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression

of an iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block,

or in any block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate

any iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a

compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

8 Configure Coding Rules Checking and Code Metrics Computation

8-52

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a

switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword

between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

 Coding Rule Subsets Checked Early in Analysis

8-53

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or

comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur

in a header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename

\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall

evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately

be followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself

subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

8 Configure Coding Rules Checking and Code Metrics Computation

8-54

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved

macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be

used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall

not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

 See Also

8-55

Create Custom Coding Rules
This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
 int a;
 int b;
} collection;

void main()
{
 collection myCollection= {0,0};
 printf("Initial values in the collection are %d and %d.",
 myCollection.a,myCollection.b);
}

User Interface (Desktop Products Only)
1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Standards & Code Metrics. Select the

Check custom rules box.
3

Click .

The Findings selection window opens, displaying in the left pane all the coding
standards Polyspace supports, and with the Custom node highlighted.

4 Specify the rules to check for in the right pane.

Expand the 4 Structs node. For the option 4.3 All struct fields must follow the
specified pattern:

8 Configure Coding Rules Checking and Code Metrics Computation

8-56

Column Title Action
Status Select .
Convention Enter All struct fields must

begin with s_ and have capital
letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message that you had entered,

All struct fields must begin with s_ and have capital letters
6 Right-click the Source pane and select Open Editor. The file

printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

Command Line
Create a coding standard configuration file. You can begin from the template file
StandardsConfiguration.xml provided in polyspaceroot\polyspace\examples
\cxx\Bug_Finder_Example\sources or polyspaceroot\polyspace\examples
\cxx\Code_Prover_Example\sources. Here, polyspaceroot is the installation
folder of the Polyspace desktop or server products. For instance, for the desktop
products, the installation folder can be C:\Program Files\Polyspace\R2019a.

To enable the custom rule 4.3, enter the following in the configuration file:

<standard name="CUSTOM RULES">
 ...
 <section name="4 Structures">

 Create Custom Coding Rules

8-57

 ...
 <check id="4.3" state="on">
 <convention>All struct fields must begin with s_
 and have capital letters or digits</convention>
 <pattern>s_[A-Z0-9_]+</pattern>
 <comment># Issue when structure field name does not begin with c_</comment>
 </check>
 ...
 </section>
 ...
</standard>

Provide this file as argument for the option Check custom rules (-custom-rules)
during analysis. For instance, if the XML file is named codingStandard.xml, for an
analysis with Polyspace Code Prover Server, enter:

polyspace-code-prover-server -sources file -custom-rules codingStandard.xml

See Also
Check custom rules (-custom-rules)

8 Configure Coding Rules Checking and Code Metrics Computation

8-58

Compute Code Complexity Metrics
This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics” (Polyspace Code Prover
Access).

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, use the option Calculate code metrics (-code-metrics).

After analysis, the software displays project, file and function metrics on the Results List
pane. You can compare the computed metric values against predefined limits. If a metric
value exceeds limits, you can redesign your code to lower the metric value. For instance,
if the number of called functions is high and several of those functions are always called
together, you can write one function that fuses the bodies of those functions. Call that one
function instead of the group of functions that are called together.

Impose Limits on Metrics (Desktop Products Only)
In the user interface of the Polyspace desktop products, open some results with metrics
computations. Then impose limits on the metric values and update results on the Results
List pane to show only metric values that exceed the limits.

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays
the HIS code metrics on page 8-62 only. Select the option to see the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics” (Polyspace Code Prover Access). If only a some metrics in a category are
selected, the check box next to the category name displays a symbol.

 Compute Code Complexity Metrics

8-59

8 Configure Coding Rules Checking and Code Metrics Computation

8-60

3 Select Apply or OK.

The drop-down list in the left of the Results List pane toolbar displays additional
options.

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results List pane.

5 Review each violation and decide how to rework your code to avoid the violation.

Note To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Impose Limits on Metrics (Server and Access products)
In the Polyspace Access web interface, limits on code complexity metrics are predefined.
In the Dashboard perspective, if you select Code Metric, a Code Metrics window
shows the metric values and limits.

To find the limits used, see “HIS Code Complexity Metrics” on page 8-62.

See Also
Calculate code metrics (-code-metrics)

More About
• “Code Metrics” (Polyspace Code Prover Access)
• “HIS Code Complexity Metrics” on page 8-62

 See Also

8-61

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original Equipment Manufacturers or OEMs.
For more information on how to focus your review to this subset of code metrics, see
“Compute Code Complexity Metrics” on page 8-59.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50

8 Configure Coding Rules Checking and Code Metrics Computation

8-62

Metric Recommended Upper Limit
Number of paths 80
Number of return statements 1

See Also

More About
• “Compute Code Complexity Metrics” on page 8-59
• “Code Metrics” (Polyspace Code Prover Access)

 See Also

8-63

Configure Verification of Modules or
Libraries

• “Provide Context for C Code Verification” on page 9-2
• “Provide Context for C++ Code Verification” on page 9-4
• “Verify C Application Without main Function” on page 9-6
• “Verify C++ Classes” on page 9-10

9

Provide Context for C Code Verification
This example shows how to provide context for your C code verification. If you use default
options and do not provide a main function, Polyspace Code Prover checks your code for
robustness against all verification conditions. For instance, the software:

• Considers that global variables and inputs of uncalled functions are full range.
• Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace
stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions” (Polyspace Code Prover).

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range
Use the following options. In the user interface of the Polyspace desktop products, the
options appear under the Code Prover Verification node.

Option Purpose
Variables to initialize (-main-
generator-writes-variables)

Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range-
specifications)

Specify range for global variables.

Control Function Call Sequence
Use the following options. In the user interface of the Polyspace desktop products, the
options appear under the Code Prover Verification node.

Option Purpose
Initialization functions (-
functions-called-before-main)

Specify the functions that the generated
main must call first.

9 Configure Verification of Modules or Libraries

9-2

Option Purpose
Functions to call (-main-
generator-calls)

Specify the functions that the generated
main must call later.

Control Stubbing Behavior
Use the following options. In the user interface of the Polyspace desktop products, the
options appear under the Inputs & Stubbing node.

Option Purpose
Functions to stub (-functions-to-
stub)

Specify the functions that Polyspace must
stub.

See Also

More About
• “Verify C Application Without main Function” on page 9-6

 See Also

9-3

Provide Context for C++ Code Verification
This example shows how to provide context to your C++ code verification. If you use
default options and do not provide a main function, Polyspace Code Prover checks your
code for robustness against all verification conditions. For instance, the software:

• Considers that global variables and inputs of uncalled functions and methods are full
range.

• Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace
stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions” (Polyspace Code Prover).

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range
Use the following options. In the user interface of the Polyspace desktop products, the
options appear under the Code Prover Verification node.

Option Purpose
Variables to initialize (-main-
generator-writes-variables)

Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range-
specifications)

Specify range for global variables.

Control Function Call Sequence
1 Use the following options to call class methods. In the user interface of the Polyspace

desktop products, the options appear under the Code Prover Verification node.

9 Configure Verification of Modules or Libraries

9-4

Option Purpose
Class (-class-analyzer) Specify classes whose methods the

generated main must call.
Functions to call within the
specified classes (-class-
analyzer-calls)

Specify methods that the generated
main must call.

Analyze class contents only (-
class-only)

Specify that the generated main must
call class methods only.

Skip member initialization
check (-no-constructors-init-
check)

Specify that the generated main must
not check whether each class
constructor initializes all class
members.

2 Use the following options to call functions that are not class methods. In the user
interface of the Polyspace desktop products, the options appear under the Code
Prover Verification node.

Option Purpose
Initialization functions (-
functions-called-before-main)

Specify the functions that the
generated main must call first.

Functions to call (-main-
generator-calls)

Specify the functions that the
generated main must call later.

See Also

More About
• “Verify C++ Classes” on page 9-10

 See Also

9-5

Verify C Application Without main Function
Polyspace verification requires that your code must have a main function. You can do one
of the following:

• Provide a main function in your code.
• Specify that Polyspace must generate a main.

Generate main Function
Before verification, specify one of the following options. In the user interface of the
Polyspace desktop products, the options appear under the Code Prover Verification
node.

Option Description
Verify whole application The verification stops if the software does

not detect a main.
Verify module or library (-main-
generator)

Before verification, Polyspace checks if your
code contains a main function.

If a main function exists, the software uses
that main. Otherwise, the software
generates a main using the options that
you specify:

• Variables to initialize (-main-
generator-writes-variables)

• Initialization functions (-
functions-called-before-main)

• Functions to call (-main-
generator-calls)

Manually Write main Function
During automatic main generation, the software makes certain assumptions about the
function call sequence or behavior of global variables. For instance, the default
automatically generated main models the following behavior:

9 Configure Verification of Modules or Libraries

9-6

• The functions that you specify using the option Functions to call (-main-
generator-calls) can be called in arbitrary order.

• In the beginning of each function body, global variables can have the full range of
values allowed by their type.

To provide a more accurate model of the call sequence, you can manually write a main
function for the purposes of verification. You can add this main function in a separate file
to your project. In some cases, providing an accurate call sequence can reduce the
number of orange checks. For example, in the following code, Polyspace assumes that f
and g can be called in any order. Therefore, it produces an orange overflow for the case
when f is called before g. If you know that f is called after g, you can write a main
function to model this sequence.

static char x;
static int y;

void f(void)
{
 y = 300;
}

void g(void)
{
 x = y;
}

Example 1: main Calls One Function Before Another

Suppose you want to verify two functions func1 and func2 that have the following
prototypes.

int func1(void *ptr, int x);
void func2(int x, int y);

You have the requirement that func1 is always called before func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 Write a loop with a volatile termination condition.

 Verify C Application Without main Function

9-7

The verification assumes that a volatile variable can have any value allowed by its
type. Because the loop potentially terminates after any run, this condition models the
fact that you call func1 and func2 an arbitrary number of times.

3 Inside this loop, call func2 after func1.

You can write the following main:
void main()
{
 volatile int random=0;
 volatile void * volatile ptr;
 while(random)
 {
 random = func1(ptr, random);
 func2(random, random);
 }
}

Example 2: main Calls One Function 10 Times Before Another

Suppose you want to verify two functions func1 and func2 with the following
prototypes:

void func1(int);
void func2(void);

You know that when both func1 and func2 are called, func1 is always called 10 times
before func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 In your main function, call func1 in a loop 10 times before func2.

For instance, you can write the following main:

void main(void) {
 int i=0;
 volatile int random=0;

 while (++i <= 10)
 func1(random);

 func2();

9 Configure Verification of Modules or Libraries

9-8

}

See Also

More About
• “Provide Context for C Code Verification” on page 9-2

 See Also

9-9

Verify C++ Classes
In this section...
“Verification of Classes” on page 9-10
“Methods and Class Specifics” on page 9-12

Verification of Classes
Object-oriented languages such as C++ are designed for reusability. When developing
code in such a language, you do not necessarily know every contexts in which the class is
deployed. A class or a class family is safe for reuse if it free of defects for all possible
contexts.

To make your classes safe against all possible contexts, perform a robustness verification
and remove as many run-time errors as possible.

Polyspace Code Prover performs a robustness verification by default. If you provide the
software the class definition together with the definition of the class methods, the
software simulates all uses of the class. If some of the method definitions are missing, the
software automatically stubs them.

1 The software verifies each constructor by creating an object using the constructor. If
a constructor does not exist, the software uses the default constructor.

2 The software verifies the public, static and protected class methods of those objects
assuming that:

• The methods can be called in arbitrary order.
• The method parameters can have any value in the range allowed by their data

type.

To perform this verification, by default, it generates a main function that calls the
methods that are not called elsewhere in the code. If you want all your methods to be
verified for all contexts, modify this behavior so that the generated main calls all
public and protected methods instead of just the uncalled ones. For more
information, see Functions to call within the specified classes (-
class-analyzer-calls).

3 The software calls the destructor of those objects (if they exist) and verifies them.

When verifying classes, Polyspace makes certain assumptions.

9 Configure Verification of Modules or Libraries

9-10

Code
Construct

Assumption

Global variable Unless explicitly initialized, in each method, global variables can have
any value allowed by their type.

For instance, in the following code, Polyspace assumes that globvar1
can have any value allowed by its type. Therefore, an orange Division
by zero appears on the division by globvar1. However, because
globvar2 is explicitly initialized, the Division by zero check on
division by globvar2 is green.

extern int fround(float fx);

// global variables
int globvar1;
int globvar2 = 100;

class Location
{
private:
 int x;

public:
 Location(int intx = 0) {
 x = intx;
 };

 void setx(int intx) {
 x = intx;
 };

 void fsetx(float fx) {
 int tx = fround(fx);
 if (tx / globvar1 != 0)
 {
 tx = tx / globvar2;
 setx(tx);
 }
 };
};

 Verify C++ Classes

9-11

Code
Construct

Assumption

Classes with
undefined
constructors

The members of the classes can be non-initialized.

In the following example, Polyspace assumes that m_loc.x can be non-
initialized. Therefore, an orange Non-initialized variable error
appears on x in the getMember method. Following the check, Polyspace
assumes that the variable can have any value allowed by its type.
Therefore, an orange Overflow appears on the addition operation in the
show method.

class OtherClass
{
protected:
 int x;
public:
 OtherClass (int intx);
 int getMember(void) {
 return x;
 };
};

class MyClass
{
 OtherClass m_loc;
public:
 MyClass(int intx) : m_loc(0) {};
 void show(void) {
 int wx, wl;
 wx = m_loc.getMember();
 wl = wx + 2;
 };
};

Methods and Class Specifics
• “Simple Class” on page 9-13
• “Template Classes” on page 9-14
• “Abstract Classes” on page 9-15
• “Static Classes” on page 9-16

9 Configure Verification of Modules or Libraries

9-12

• “Inherited Classes” on page 9-16
• “Simple Inheritance” on page 9-18
• “Multiple Inheritance” on page 9-19
• “Virtual Inheritance” on page 9-20
• “Class Integration” on page 9-20

Simple Class

Consider the following class:

Stack.h

#define MAXARRAY 100

class stack
{
 int array[MAXARRAY];
 long toparray;

public:
 int top (void);
 bool isempty (void);
 bool push (int newval);
 void pop (void);
 stack ();
};

stack.cpp

1 #include "stack.h"
2
3 stack::stack ()
4 {
5 toparray = -1;
6 for (int i = 0 ; i < MAXARRAY; i++)
7 array[i] = 0;
8 }
9
10 int stack::top (void)
11 {
12 int i = toparray;
13 return (array[i]);
14 }

 Verify C++ Classes

9-13

15
16 bool stack::isempty (void)
17 {
18 if (toparray >= 0)
19 return false;
20 else
21 return true;
22 }
23
24 bool stack::push (int newvalue)
25 {
26 if (toparray < MAXARRAY)
27 {
28 array[++toparray] = newvalue;
29 return true;
30 }
31
32 return false;
33 }
34
35 void stack::pop (void)
36 {
37 if (toparray >= 0)
38 toparray--;
39 }

The class analyzer calls the constructor and then the methods in any order many times.

The verification of this class highlights two problems:

• The stack::push method may write after the last element of the array, resulting in
the OBAI orange check at line 28.

• If called before push, the stack::top method will access element -1, resulting in the
OBAI and NIV checks at line 13.

Fixing these problems will eliminate run-time errors in this class.

Template Classes

A template class allows you to create a class without explicit knowledge of the data type
that the class operations handle. Polyspace cannot verify a template class directly. The
software can only verify a specific instance of the template class. To verify a template
class:

9 Configure Verification of Modules or Libraries

9-14

1 Create an explicit instance of the class.
2 Define a typedef of the instance and provide that typedef for verification.

In the following example, calc is a template class that can handle any data type through
the identifier myType.

template <class myType> class calc
{
public:
 myType multiply(myType x, myType y);
 myType add(myType x, myType y);
};
template <class myType> myType calc<myType>::multiply(myType x,myType y)
{
 return x*y;
}
template <class myType> myType calc<myType>::add(myType x, myType y)
{
 return x+y;
}

To verify this class:

1 Add the following code to your Polyspace project.

template class calc<int>;
typedef calc<int> my_template;

2 Provide my_template as argument of the option Class. See Class (-class-
analyzer).

Abstract Classes

In the real world, an instance of an abstract class cannot be created, so it cannot be
analyzed. However, it is easy to establish a verification by removing the pure declarations.
For example, this can be accomplished via an abstract class definition change:

void abstract_func () = 0; by void abstract_func ();

If an abstract class is provided for verification, the software will make the change
automatically and the virtual pure function (abstract_func in the example above) will
then be ignored during the verification of the abstract class.

This means that no call will be made from the generated main, so the function is
completely ignored. Moreover, if the function is called by another one, the pure virtual

 Verify C++ Classes

9-15

function will be stubbed and an orange check will be placed on the call with the message
“call of virtual function [f] may be pure.”

Consider the following classes:

A is an abstract class

B is a simple class.

A and B are base classes of C.

C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed separately
from other classes. Therefore, you are not allowed to specify class A to the Polyspace
class analyzer. Of course, class C can be analyzed in the same way as in the previous
section “Multiple Inheritance.”

Static Classes

If a class defines a static methods, it is called in the generated main as a classical one.

Inherited Classes

When a function is not defined in a derived class, even if it is visible because it is
inherited from a father's class, it is not called in the generated main. In the example
below, the class Point is derived from the class Location:

9 Configure Verification of Modules or Libraries

9-16

class Location
{
protected:
 int x;
 int y;
 Location (int intx, int inty);
public:
 int getx(void) {return x;};
 int gety(void) {return y;};
};
class Point : public Location
{
protected:
 bool visible;
public :
 Point(int intx, int inty) : Location (intx, inty)
 {
 visible = false;
 };
 void show(void) { visible = true;};
 void hide(void) { visible = false;};
 bool isvisible(void) {return visible;};
};

Although the two methods Location::getx and Location::gety are visible for
derived classes, the generated main does not include these methods when analyzing the
class Point.

Inherited members are considered to be volatile if they are not explicitly initialized in the
father's constructors. In the example above, the two members Location::x and
Location::y will be considered volatile. If we analyze the above example in its current
state, the method Location:: Location(constructor) will be stubbed.

 Verify C++ Classes

9-17

Simple Inheritance

Consider the following classes:

A is the base class of B and D.

B is the base class of C.

In a case such a this, Polyspace software allows you to run the following verifications:

1 You can analyze class A just by providing its code to the software. This corresponds to
the previous “Simple Class” section in this chapter.

2 You can analyze class B class by providing its code and the class A declaration. In this
case, A code will be stubbed automatically by the software.

3 You can analyze class B class by providing B and A codes (declaration and definition).
This is a “first level of integration” verification. The class analyzer will not call A
methods. In this case, the objective is to find bugs only in the class B code.

9 Configure Verification of Modules or Libraries

9-18

4 You can analyze class C by providing the C code, the B class declaration and the A
class declaration. In this case, A and B codes will be stubbed automatically.

5 You can analyze class C by providing the A, B and C code for an integration
verification. The class analyzer will call all the C methods but not inherited methods
from B and A. The objective is to find only defects in class C.

In these cases, there is no need to provide D class code for analyzing A, B and C classes as
long as they do not use the class (e.g., member type) or need it (e.g., inherit).

Multiple Inheritance

Consider the following classes:

A and B are base classes of C.

In this case, Polyspace software allows you to run the following verifications:

1 You can analyze classes A and B separately just by providing their codes to the
software. This corresponds to the previous “Simple Class” section in this chapter.

2 You can analyze class C by providing its code with A and B declarations. A and B
methods will be stubbed automatically.

3 You can analyze class C by providing A, B and C codes for an integration verification.
The class analyzer will call all the C methods but not inherited methods from A and B.
The objective is to find bugs only in class C.

 Verify C++ Classes

9-19

Virtual Inheritance

Consider the following classes:

B and C classes virtually inherit the A class

B and C are base classes of D.

A, B, C and D can be analyzed in the same way as described in the previous section
“Abstract Classes.”

Virtual inheritance has no impact on the way of using the class analyzer.

Class Integration

Consider a C class that inherits from A and B classes and has object members of AA and
BB classes.

A class integration verification consists of verifying class C and providing the codes for A,
B, AA and BB. If some definitions are missing, the software will automatically stub them.

9 Configure Verification of Modules or Libraries

9-20

See Also
“Provide Context for C++ Code Verification” on page 9-4

 See Also

9-21

Configure Comment Import from
Previous Results

• “Import Review Information from Previous Polyspace Analysis” on page 10-2
• “Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results”

on page 10-6

10

Import Review Information from Previous Polyspace
Analysis

After you have reviewed analysis results, you can reuse information from the review for
subsequent analyses. If you specify a result status or severity or add notes in your results
file, they carry over to the results of the next analysis on the same project. If you add the
same information as comments to your code (annotate), they carry over to any
subsequent analysis of the code, whether in the same project or not. You can also hide
results using code annotations. For more information on commenting, see Polyspace Code
Prover Access documentation.

This topic shows how to import review information from one result file to another.
Importing the review information saves you from reviewing already justified results. For
instance, after you import the information, on the Results List pane (user interface of

desktop products), clicking the icon skips justified results. Using this icon, you can
browse through unreviewed results. You can also filter the justified checks from display.

Automatic Import from Last Analysis
By default, in the Polyspace user interface (desktop products only), review information is
imported automatically from the most recent analysis on the project module. You can
disable this default behavior.

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last

verification.
4 Click OK.

If you upload results to the Polyspace Access web interface, review information from the
last run of the same project are applied to the current run. You cannot disable the
automatic import.

If you run analysis at the command line (and do not upload results to the Polyspace
Access web interface), you have to explicitly import from another set of results. See
“Command Line” on page 10-3.

10 Configure Comment Import from Previous Results

10-2

Import from Another Analysis Result
You can import review information directly from another Polyspace result to the current
result.

If a result is found in both a Bug Finder and Code Prover analysis, you can add review
information to the Bug Finder result and import to the Code Prover result. For instance,
most coding rule checkers are common to Bug Finder and Code Prover. You can add
review information to coding rule violations in Bug Finder and import to the same
violations in Code Prover.

User Interface (Desktop Products Only)

To import review information from another set of results:

1 Open the current analysis results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the other results file (with extension .psbf or .pscp) and then click Open.

The review information from the previous results are imported into the current
results.

Command Line

Use the option -import-comments during analysis to import comments from a previous
verification.

To import review information from multiple results, use the polyspace-comments-
import command.

 Import Review Information from Previous Polyspace Analysis

10-3

Import Algorithm
You can directly import review information from another set of results into the current
results. However, it is possible that part of your review information is not imported to a
subsequent analysis because:

• You have changed your source code so that the line with a previous result is not
exactly identical to the line in the current run.

The comment import tool accounts for additional code that simply shifts an existing
line. For instance, the tool recognizes that line 10 in Run 1 and line 12 in Run 2 have
the same statement. If a division by zero occurs on line 10 in Run 1 and you have not
fixed the issue in Run 2, the result along with associated review information are
imported to line 12 in Run 2.

• Run 1:

10 baseLine = min/numRecipients;
11
12

• Run 2:

10 /* Calculate a baseline per recipient
11 based on minimum available resources */
12 baseLine = min/numRecipients;

However, if you change the line content itself, for instance, change numRecipient to
numReceiver, the result and review information are not imported.

• You have changed your source code so that the Code Prover result color has changed.
• You entered new review information for the same result.

View Imported Review Information That Does Not Apply
In the Polyspace user interface (desktop products only), the Import Checks and
Comments Report highlights differences between two analysis results. When you import
review information from a previous analysis, you can see this report. If you have closed
the report after an import, to review the report again:

1 Select Window > Show/Hide View > Import Comments Report.

10 Configure Comment Import from Previous Results

10-4

The Import Checks and Comments Report opens, highlighting differences in the two
results.

2 Review the differences between the two results.

Your review information can differ between two results because of the following reasons:

• In Code Prover, if the check color changes, Polyspace imports the Comment field but
not the Status field. In addition, Polyspace imports the Severity and Justified fields
depending on the color change.

Color Change Severity Justified
Orange or red to green Not imported Imported
Gray to green Not imported Imported, if the Severity

was set to High, Medium
or Low.

Red to orange or vice
versa

Imported Imported

Green to red/orange/gray Not imported Not imported

• If a result no longer appears in the code, Polyspace highlights only the change in the
Import Checks and Comments Report. It does not import review information from the
previous result.

• If you have already entered different review information for the same check, Polyspace
highlights only the change in the Import Checks and Comments Report. It does not
import review information from the previous result.

See Also
-import-comments | polyspace-comments-import

 See Also

10-5

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results

When you check your code for MISRA C: 2012 violations, Polyspace imports justifications
of MISRA C: 2004 violations from previous analyses (if they exist). You can upgrade from
checking of MISRA C: 2004 rules to MISRA C: 2012 rules while retaining your
justifications. For general rules on comment import, see “Import Review Information from
Previous Polyspace Analysis” on page 10-2.

The software maps MISRA C: 2004 Status, Severity, and Comment values that you
added through the user interface or code annotations to the corresponding MISRA C:
2012 results, if the results exist. For more information about mapping, consult addendum
one of the MISRA C: 2012 publication.

If you are transitioning from MISRA C: 2004 to MISRA C: 2012, you do not have to review
results that you have already justified.

10 Configure Comment Import from Previous Results

10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result
When you justify MISRA C: 2004 violations by using code block syntax or multiple line
annotation syntax, and multiple violations map to the same MISRA C: 2012 rule,
Polyspace does not import each result justification. Instead, the software imports only one
set of Status, Severity, and Comment values and applies these values to all the
instances of that particular MISRA C: 2012 rule violation.

For example, suppose that you analyze your code and find violations of MISRA C: 2004
rules 16.3 and 16.5. You can justify these results by using the annotation syntax where
you enter a different status and explanatory comment for each rule.

//polyspace-begin misra2004:16.3 [Status 1] "Explanatory comment 1"
//polyspace-begin misra2004:16.5 [Status 2] "Explanatory comment 2"

code block start;
/* This block of code contains violations of
MISRA C:2004 rules 16.3 and 16.5 */
code block end;

//polyspace-end misra2004:16.3
//polyspace-end misra2004:16.5

 Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results

10-7

The previous violations map to MISRA C: 2012 rule 8.2. When you check your annotated
code against MISRA C: 2012 rules, Polyspace imports only the first line of annotations
(for rule 16.3) and applies it to all rule 8.2 results. The second line of annotations for rule
16.5 is ignored. In the Results List pane, all violations of rule 8.2 have the Status
column set to Status 1 and the Comment column set to "Explanatory comment 1".

Note The Output Summary pane displays a warning message for every result where the
imported annotation conflicts with the original annotation. After you import your MISRA
C: 2004 annotations, check that a justified status has not been assigned to results you
intend to investigate or fix.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA C:2012 (-misra3)

10 Configure Comment Import from Previous Results

10-8

Troubleshooting in Polyspace Code
Prover Server

• “Read Error Information When Polyspace Analysis Stops” on page 11-3
• “Troubleshoot Compilation and Linking Errors” on page 11-4
• “Reduce Memory Usage and Time Taken by Polyspace Analysis” on page 11-8
• “Contact Technical Support” on page 11-14
• “Polyspace Cannot Find the Server” on page 11-17
• “Job Manager Cannot Write to Database” on page 11-18
• “Compiler Not Supported for Project Creation from Build Systems” on page 11-20
• “Slow Build Process When Polyspace Traces the Build” on page 11-30
• “Check if Polyspace Supports Build Scripts” on page 11-31
• “Troubleshooting Project Creation from MinGW Build” on page 11-33
• “Troubleshooting Project Creation from Visual Studio Build” on page 11-34
• “Error Processing Macro with Semicolon in Build System” on page 11-35
• “Could Not Find Include File” on page 11-36
• “Conflicting Universal Unique Identifiers (UUIDs)” on page 11-38
• “Data Type Not Recognized” on page 11-40
• “Undefined Identifier Error” on page 11-42
• “Unknown Function Prototype Error” on page 11-46
• “Error Related to #error Directive” on page 11-48
• “Large Object Error” on page 11-50
• “Errors Related to Generic Compiler” on page 11-53
• “Errors Related to Keil or IAR Compiler” on page 11-55
• “Errors Related to Diab Compiler” on page 11-56
• “Errors Related to Green Hills Compiler” on page 11-59
• “Errors Related to TASKING Compiler” on page 11-61

11

• “Errors from In-Class Initialization (C++)” on page 11-63
• “Errors from Double Declarations of Standard Template Library Functions (C++)”

on page 11-64
• “Errors Related to GNU Compiler” on page 11-65
• “Errors Related to Visual Compilers” on page 11-66
• “Conflicting Declarations in Different Translation Units” on page 11-68
• “Errors from Conflicts with Polyspace Header Files” on page 11-75
• “C++ Standard Template Library Stubbing Errors” on page 11-77
• “Lib C Stubbing Errors” on page 11-78
• “Errors from Using Namespace std Without Prefix” on page 11-80
• “Errors from Assertion or Memory Allocation Functions” on page 11-81
• “Error from Special Characters” on page 11-82
• “Error or Slow Runs from Disk Defragmentation and Anti-virus Software”

on page 11-83
• “SQLite I/O Error” on page 11-85
• “License Error –4,0” on page 11-86

11 Troubleshooting in Polyspace Code Prover Server

11-2

Read Error Information When Polyspace Analysis Stops
When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to
compile, the analysis continues with the remaining files. You can choose to stop the
analysis on compilation errors using the option Stop analysis if a file does not
compile (-stop-if-compile-error).

However, it is more convenient to let the analysis complete and capture all compilation
errors. In a continuous integration process, you can send a notification to the build
engineer with a list of compilation errors.

The compilation errors are displayed in the analysis log in addition to the options used
and the various stages of analysis. The analysis log is a text file generated in your results
folder and titled Polyspace_version_project_date_time.txt. The lines that
indicate errors begin with the Error: string and the lines that indicate warnings begin
with the Warning: string. Find these lines and extract them to another text file for easier
scanning.

 Read Error Information When Polyspace Analysis Stops

11-3

Troubleshoot Compilation and Linking Errors
Run Polyspace verification on code that builds successfully with your compiler. Once your
code builds successfully, set up a Polyspace project in one of these ways:

• Trace your build system with the polyspace-configure command.

The software creates an options file from your build scripts. It sets appropriate
Polyspace analysis options to emulate your build options.

• If you cannot trace your build system, create a Polyspace options file manually.

Add your sources and includes to the project. Change the default analysis options, if
required.

For more information, see “Prepare Scripts for Polyspace Analysis” on page 1-2.

The following issue occurs more often if you manually set up your project.

Issue
Before verification and detection of run-time errors, Polyspace compiles your code and
detects compilation and linking errors. Even if your code builds successfully with your
compiler, you might still get compilation errors with Polyspace.

Possible Cause: Deviations from ANSI C99 Standard
The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation that uses
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keywords that Polyspace does not recognize by default.

To guarantee absence of certain run-time errors, the default Polyspace compilation
strictly follows the standard. Specific compilers allow specific deviations from this
standard and follow internal algorithms to compile your code. Without explicit knowledge
of your compiler behavior, Polyspace cannot accommodate those deviations.
Accommodating these deviations through some arbitrary internal algorithms can
compromise the final analysis results, if the Polyspace algorithm does not match your
compiler’s algorithm.

Check the error message that caused the compilation failure and see if you can identify
some deviation from the standard. The error message shows the line number that caused

11 Troubleshooting in Polyspace Code Prover Server

11-4

the compilation failure. If you run verification from the user interface, you can click the
error message and navigate to the corresponding line of code.

Solution

Change analysis options to emulate your compiler more closely. To get past compilation
issues, use these options.

Option Purpose
“Target and
Compiler” options

Using these predefined options, you can specify your compiler
behavior directly and work around known deviations from the
standard.

Often, setting Compiler (-compiler) appropriately is enough
to emulate your compiler.

• Preprocessor
definitions (-
D)

• Command/script
to apply to
preprocessed
files (-post-
preprocessing-
command)

Using these options, you can sometimes work around unknown
deviations from the standard.

For instance, you can use these options to replace unrecognized
keywords from your preprocessed code with closely matching
recognized keywords, or remove them completely. Because you
do not change your source code, the options allow you to work
around compilation errors while keeping your source code intact.

For specific types of compilation errors, see “Troubleshoot Compilation Errors”.

If you cannot solve your compilation error, contact MathWorks Technical Support and
provide your compiler name for better support. See “Contact Technical Support” on page
11-14.

Possible Cause: Linking Errors
Even if a single compilation unit compiles successfully, you get a linking error because of
mismatch between two compilation units. For instance, you define the same function in
two .c files with different argument or return types.

Common compilation toolchains do not store information about function prototypes
during the linking process. Therefore, despite these types of linking errors, the build does

 Troubleshoot Compilation and Linking Errors

11-5

not fail. To guarantee absence of certain run-time errors, Polyspace does not continue
analysis when such linking errors occur.

Solution

Fix the linking errors that Polyspace detects. Even if your build process allows these
errors, you can have unexpected results during run time. For instance, if two function
definitions with the same name but conflicting prototypes exist in your code, when you
call the function, the result can be unexpected.

When a linking error occurs, the error message shows the location in your file where
Polyspace compilation fails. Previous warning messages show the location of the conflicts
that lead to the linking error. Using the line numbers in those messages (or by clicking
the messages if you run analysis from the user interface), you can navigate to the location
of the conflicts in your code.

For specific types of linking errors, see “Troubleshoot Compilation Errors”.

Possible Cause: Conflicts with Polyspace Function Stubs
Polyspace uses its own implementation of standard library functions for more efficient
verification. If your compiler redeclares and redefines a standard library function, you can
get a warning or error when you invoke the function.

The error implies that Polyspace found the redeclaration but cannot find the body of your
redefined library function. The verification continues to use the Polyspace implementation
of the function but provides a warning. If your redefined function has a different signature
from the normal signature of the function, the verification stops with an error.

Warnings and errors of this type often refer to the file __polyspace__stdstubs.c. This
file contains prototypes for the Polyspace implementation of standard library functions.
The file is located in polyspaceroot\polyspace\verifier\cxx\polyspace_stubs
\. polyspaceroot is the Polyspace installation folder.

Solution

If you know the location of the file that contains the body of your redefined standard
library function, add the file to your verification. For more information, see “Errors from
Conflicts with Polyspace Header Files” on page 11-75.

If you do not have the function body available:

11 Troubleshooting in Polyspace Code Prover Server

11-6

• If you see a warning of this type, you can ignore the warning. The verification results
are based on Polyspace implementations of standard library functions. If your compiler
redefinition closely matches the standard library function specifications, the
verification results are still applicable for code compiled with your compiler.

• If you see an error:

1 Define the macro __polyspace_no_function_name in your project. For
instance, if an error occurs because of a conflict with the definition of the
sprintf function, define the macro __polyspace_no_sprintf. For information
on how to define macros, see Preprocessor definitions (-D).

The macro disables the use of Polyspace implementations of the standard library
function. The software stubs the standard library function like any other
undefined function. You do not have an error because of signature mismatch with
the Polyspace implementations.

2 Contact MathWorks Technical Support and provide information about your
compiler.

For some standard library functions, such as assert, and memory allocation functions
such as malloc and calloc, Polyspace continues to use its own implementations, even if
you redefine the function and provide the function body. For more information, see
“Errors from Assertion or Memory Allocation Functions” on page 11-81.

 Troubleshoot Compilation and Linking Errors

11-7

Reduce Memory Usage and Time Taken by Polyspace
Analysis

In this section...
“Issue” on page 11-8
“Possible Cause: Anti-Virus Software” on page 11-8
“Possible Cause: Large and Complex Application” on page 11-9
“Possible Cause: Too Many Entry Points for Multitasking Applications” on page 11-11

Issue
The verification is stuck at a certain point for a long time. Sometimes, after the period of
inactivity exceeds an internal threshold, the verification stops or you get an error
message:

The analysis has been stopped by timeout.

For large projects with several hundreds of source files or millions of lines of code, you
might run into the same issue in another way. The verification stops with the error
message:

Fatal error: Not enough memory

If you have a multicore system with more than four processors, try increasing the number
of processors by using the option -max-processes. By default, the verification uses up
to four processors. If you have fewer than four processors, the verification uses the
maximum available number. You must have at least 4 GB of RAM per processor for
analysis. For instance, if your machine has 16 GB of RAM, do not use this option to specify
more than four processors.

If the verification still takes too long, to improve the speed and make the verification
faster, try one of the solutions below.

Possible Cause: Anti-Virus Software
In some cases, anti-virus software checks can noticeably slow down a Polyspace analysis.
This reduction occurs because the software checks the temporary files produced by the
Polyspace analysis.

11 Troubleshooting in Polyspace Code Prover Server

11-8

Configure Exceptions for Polyspace Processes

Check the processes running and see if an anti-virus is consuming large amount of
memory.

See “Error or Slow Runs from Disk Defragmentation and Anti-virus Software” on page 11-
83.

Possible Cause: Large and Complex Application
The verification time depends on the size and complexity of your code.

If the application contains greater than 100,000 lines of code, the verification can
sometimes take a long time. Even for smaller applications, the verification can take long if
it involves complexities such as structures with many levels of nesting or several levels of
aliasing through pointers. You can see the number of lines excluding comments towards
the beginning of the analysis log in your results folder. Search for the string:

Number of lines without comments

However, if verification with the default options takes unreasonably long or stops
altogether, there are multiple strategies to reduce the verification time. Each strategy
involves reducing the complexity of verification in some way.

Solution: Use Polyspace Bug Finder First

Use Polyspace Bug Finder first to find defects in your code. Some defects that Polyspace
Bug Finder finds can translate to a red error in Polyspace Code Prover. Once you fix these
defects, use Polyspace Code Prover for a more rigorous verification.

Solution: Modularize Application

You can divide the application into multiple modules. Verify each module independently of
the other modules. You can review the complete results for one module, while the
verification of the other modules are still running.

• You can let the software modularize your application. The software divides your source
files into multiple modules such that the interdependence between the modules is as
little as possible. Use the polyspace-modularize command in polyspaceroot
\polyspace\bin to create an initial. For more information on the command, use the
-h option.

 Reduce Memory Usage and Time Taken by Polyspace Analysis

11-9

• You can perform a file-by-file verification. Each file constitutes a module by itself. See
Verify files independently (-unit-by-unit).

When you divide your complete application into modules, each module has some
information missing. For instance, one module can contain a call to a function that is
defined in another module. The software makes certain assumptions about the undefined
functions. If the assumptions are broader than an actual representation of the function,
you see an increase in orange checks from overapproximation. For instance, an error
management function might return an int value that is either 0 or 1. However, when
Polyspace cannot find the function definition, it assumes that the function returns all
possible values allowed for an int variable. You can narrow down the assumptions by
specifying external constraints. See Constraint setup (-data-range-
specifications).

When modularizing an application manually, you can follow your own modularization
approach. For instance, you can copy only the critical files that you are concerned about
into one module, and verify them. You can represent the remaining files through external
constraints, provided you are confident that the constraints represent the missing code
faithfully. For instance, the constraints on an undefined function represent the function
faithfully if they represent the function return value and also reproduce other relevant
side effects of the function. To specify external constraints, use the option Constraint
setup (-data-range-specifications).

Solution: Choose Lower Precision Level or Verification Level

If your verification takes too long, use a lower precision level or a lower verification level.
Fix the red errors found at that level and rerun verification.

• The precision level determines the algorithm used for verification. Higher precision
leads to greater number of proven results but also requires more verification time. For
more information, see Precision level (-O).

• The verification level determines the number of times Polyspace runs on your source
code. For more information, see Verification level (-to).

The verification results from lower precision can contain more orange checks. An orange
check indicates that the analysis considers an operation suspect but cannot prove the
presence or absence of a run-time error. You have to review an orange check thoroughly
to determine if you can retain the operation. By increasing the number of orange checks,
you are effectively increasing the time you spend reviewing the verification results.
Therefore, use these strategies only if the verification is taking too long.

11 Troubleshooting in Polyspace Code Prover Server

11-10

Solution: Reduce Code Complexity

Both for better readability of your code and for shorter verification time, you can reduce
the complexity of your code. Polyspace calculates code complexity metrics from your
application, and allows you to limit those metrics below predefined values.

For more information, see:

• “Code Metrics” (Polyspace Code Prover Access): List of code complexity metrics and
their recommended upper limits

• “Compute Code Complexity Metrics” on page 8-59: How to set limits on code
complexity metrics

Solution: Enable Approximations

Depending on your situation, you can choose scaling options to enable certain
approximations. Often, warning messages indicate that you must use those options to
reduce verification.

Situation Option
Your code contains structures that are
many levels deep.

Depth of verification inside
structures (-k-limiting)

The verification log contains suggestions to
inline certain functions.

Inline (-inline)

Solution: Remove Parts of Code

You can try to remove code from third-party libraries. The software uses stubs for
functions that are not defined in files specified for the Polyspace analysis.

Although the analysis time is reduced, you can see an increase in orange checks because
of Polyspace assumptions about stubbed functions. You can constrain stubbed functions
using the option Constraint setup (-data-range-specifications).

Possible Cause: Too Many Entry Points for Multitasking
Applications
If your code is intended for multitasking and you provide many Tasks, verification can
take a long time. The following warning can appear:

 Reduce Memory Usage and Time Taken by Polyspace Analysis

11-11

Warning: Important use of shared variables have been detected,
| verification carry on but to avoid scaling issues
| it roughly approximates shared variables values.
| You may consider adding -force-refined-shared-variables-analysis
 option to improve results

If you receive this warning, it means that Polyspace is switching to a less precise analysis
mode to complete the verification in a reasonable amount of time. In this less precise
mode, the verification can consider some shared variables as full-range and cause orange
checks from overapproximation.

Solution

Instead of using the option -force-refined-shared-variables-analysis to retain
the precise analysis, you can reduce the number of entry points that you specify. If you
know that some of your entry point functions do not execute concurrently, you do not have
to specify them as separate entry points. You can call those functions sequentially in a
wrapper function, and then specify the wrapper function as your entry point.

For instance, if you know that the entry point functions task1, task2, and task3 do not
execute concurrently:

1 Define a wrapper function task that calls task1, task2, and task3 in all possible
sequences.

void task() {
 volatile int random = 0;
 if (random) {
 task1();
 task2();
 task3();
 } else if (random) {
 task1();
 task3();
 task2();
 } else if (random) {
 task2();
 task1();
 task3();
 } else if (random) {
 task2();
 task3();
 task1();
 } else if (random) {

11 Troubleshooting in Polyspace Code Prover Server

11-12

 task3();
 task1();
 task2();
 } else {
 task3();
 task2();
 task1();
 }
}

2 Instead of task1, task2, and task3, specify task for the option Tasks (-entry-
points).

For an example of using a wrapper function as an entry point, see “Configuring Polyspace
Multitasking Analysis Manually” on page 7-19.

See Also

External Websites
• Resolving Scaling Problems in Code Prover

 See Also

11-13

https://www.mathworks.com/matlabcentral/answers/uploaded_files/57367/Scaling%20problem%20survival%20guide.pdf

Contact Technical Support
To contact MathWorks Technical Support, use this page. You need a MathWorks Account
login and password. For faster turnaround with an issue in Polyspace, besides the
required system information, provide appropriate code that reproduces the issue or the
verification log file.

Provide System Information
When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command, replacing polyspaceroot with

your Polyspace installation folder:

• UNIX — polyspaceroot/polyspace/bin/polyspace-code-prover -ver
• Windows — polyspaceroot\polyspace\bin\polyspace-code-prover -ver

Provide Information About the Issue
Depending on the issue, provide appropriate artifacts to help Technical Support
understand and reproduce the issue.

Compilation Errors

If you face compilation issues with your project, see “Troubleshoot Compilation Errors”. If
you are still having issues, contact technical support with the following information:

11 Troubleshooting in Polyspace Code Prover Server

11-14

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the error message, the
options used for the analysis and other relevant information.

• The source files related to the compilation error, if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation
issue.

• Try to reproduce the issue with a different code. Provide that code to technical
support.

Errors in Project Creation from Build Systems

If you face errors in creating a project from your build system, see “Troubleshoot Project
Creation”.

If you are still having issues, contact technical support with debug information. To
provide the debug information:

1 Run polyspace-configure at the command line with the options -debug and -
build-trace. For instance:

polyspace-configure options -debug -build-trace build.txt
 buildCommand 2>&1 > out.log

Here:

• options is the list of polyspace-configure options that you typically use.
• buildCommand is the build command that you use, for instance, make.

Make sure that you do not use the option -verbose or -silent after -debug.
2 Provide the files build.txt and out.log.

 Contact Technical Support

11-15

Verification Result

If you are having trouble understanding a result, see “Polyspace Code Prover Access
Results” (Polyspace Code Prover Access).

If you are still having trouble understanding the result, contact technical support with the
following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the options used for
the analysis and other relevant information.

• The source files related to the result if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the
Polyspace user interface.

• Try to reproduce the problem with a different code. Provide that code to technical
support.

11 Troubleshooting in Polyspace Code Prover Server

11-16

Polyspace Cannot Find the Server

Message
Error: Cannot instantiate Polyspace cluster
| Check the -scheduler option validity or your default cluster profile
| Could not contact an MJS lookup service using the host computer_name.
 The hostname, computer_name, could not be resolved.

Possible Cause
Polyspace uses information provided in the preferences of a Polyspace desktop product to
locate the server. If this information is incorrect, the software cannot locate the server.

Solution
Open the user interface of the Polyspace desktop product. Check if the server information
provided is correct.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Check your server information.

For instance, the entry in Job scheduler host name must match the host name of
the computer that forms the head node of the MATLAB Parallel Server cluster. For
more information, see “Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server”.

 Polyspace Cannot Find the Server

11-17

Job Manager Cannot Write to Database

Message
Unable to write data to the job manager database

Possible Cause
If the computer that forms the head node of the MATLAB Parallel Server cluster cannot
send data to the client computer, you see this error. The most likely reasons for the
remote computer being unable to connect to the client computer are:

• Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.
• The MATLAB Job Scheduler cannot resolve the short hostname of the client computer.

Workaround
Add localhost IP to configuration.

1 In the user interface of the Polyspace desktop products, select Tools > Preferences.
2 On the Server Configuration tab, in the Localhost IP address field, enter the IP

address of your local computer.

To retrieve your IP address:

• Windows

1 Open Control Panel > Network and Sharing Center.
2 Select your active network.
3 In the Status window, click Details. Your IP address is listed under IPv4 address.

• Linux — Run the ifconfig command and find the inet addr corresponding to your
network connection.

• Mac — Open System Preferences > Network.

11 Troubleshooting in Polyspace Code Prover Server

11-18

See Also

Related Examples
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server”
• “Connection Problems Between the Client and MATLAB Job Scheduler” (Parallel

Computing Toolbox)

 See Also

11-19

Compiler Not Supported for Project Creation from Build
Systems

Issue
Your compiler is not supported for automatic project creation from build commands.

Cause
For automatic project creation from your build system, your compiler configuration must
be available to Polyspace. Polyspace provides a compiler configuration file only for certain
compilers.

For information on which compilers are supported, see “Requirements for Project
Creation from Build Systems” on page 5-23.

Solution
To enable automatic project creation for an unsupported compiler, you can write your own
compiler configuration file.

1 Copy one of the existing configuration files from polyspaceroot\polyspace
\configure\compiler_configuration\. Select the configuration that most
closely corresponds to your compiler using the mapping between the configuration
files and compiler names on page 11-28.

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished editing,
you must copy the file back to polyspaceroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

4 After saving the edited XML file to polyspaceroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command.

11 Troubleshooting in Polyspace Code Prover Server

11-20

If you see errors, for instance, compilation errors, contact MathWorks Technical
Support. After tracing your build command, the software compiles certain files using
the compiler specifications detected from your configuration file and build command.
Compilation errors might indicate issues in the configuration file.

Tip To quickly see if your compiler configuration file works, run the automatic
project setup on a sample build that does not take much time to complete. After you
have set up a project with your compiler configuration file, you can use this file for
larger builds.

Elements of Compiler Configuration File

The following table lists the XML elements in the compiler configuration file file with a
description of what the content within the element represents.

 Compiler Not Supported for Project Creation from Build Systems

11-21

XML Element Content Description Content
Example for
GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files into
object files. You can add
several binary names, each in
a separate <name>...</
name> element. The software
checks for each of the
provided names and uses the
compiler name for which it
finds a match.

You must not specify the linker
binary inside the
<name>...</name>
elements.

If the name that you specify is
present in an existing compiler
configuration file, an error
occurs. To avoid the error, use
the additional option -
compiler-config
my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc
• gpp

11 Troubleshooting in Polyspace Code Prover Server

11-22

XML Element Content Description Content
Example for
GNU C
Compiler

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify
include folders.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify
system headers.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with
your compiler to force
inclusion of a file in the
compiled object.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-include

 Compiler Not Supported for Project Creation from Build Systems

11-23

XML Element Content Description Content
Example for
GNU C
Compiler

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-U

11 Troubleshooting in Polyspace Code Prover Server

11-24

XML Element Content Description Content
Example for
GNU C
Compiler

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

You can use the isPrefix
attribute to specify multiple
options that have the same
prefix and the numArgs
attribute to specify options
with multiple arguments. For
instance:

• Instead of

<opt>-m32</opt>
<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</
opt>.

• Instead of

<opt>-std=c90</opt>
<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</
opt>. If your makefile uses
-std c90 instead of -
std=c90, this notation also
supports that usage.

• -ansi
• -std =C90
• -std =c+

+11
• -fun

signed -
char

 Compiler Not Supported for Project Creation from Build Systems

11-25

XML Element Content Description Content
Example for
GNU C
Compiler

<compiler> ... </compiler> The Polyspace compiler option
that corresponds to or closely
matches your compiler. The
content of this element directly
translates to the option
Compiler in your Polyspace
project or options file.

For the complete list of
compilers available, see
Compiler (-compiler).

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

You can use the macro $
(OUTPUT_FILE) if your
compiler does not allow
sending the preprocessed file
to the standard output. Instead
it defines the preprocessed file
internally.

-E

For an example
of the $
(OUTPUT_FILE)
macro, see the
existing
compiler
configuration file
cl2000.xml.

11 Troubleshooting in Polyspace Code Prover Server

11-26

XML Element Content Description Content
Example for
GNU C
Compiler

<preprocessed_output_file> ... </
preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following
macros when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source
file name

• $(SOURCE_FILE_EXT):
Source file extension

• $
(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use $
(SOURCE_FILE_NO_EXT).pr
e when the preprocessor file
name has the same name as
the source file, but with
extension .pre.

For an example
of this element,
see the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c
• cpp
• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

 Compiler Not Supported for Project Creation from Build Systems

11-27

XML Element Content Description Content
Example for
GNU C
Compiler

<polyspace_extra_options_list>
 <opt> ... </opt>
 <opt> ... </opt>
</polyspace_extra_options_list>

Additional options that are
used for the subsequent
analysis.

For instance, to avoid
compilation errors in the
subsequent analysis due to
non-ANSI extension keywords,
enter -D keyword=value, for
example:

<polyspace_extra_options_list>
 <opt>-D MACRO1</opt>
 <opt>-D MACRO2=VALUE</opt>
</polyspace_extra_options_list>

For more information, see
Preprocessor
definitions (-D).

Mapping Between Existing Configuration Files and Compiler Names

Select the configuration file in polyspaceroot\polyspace\configure
\compiler_configuration\ that most closely resembles the configuration of your
compiler. Use the following table to map compilers to their configuration files.

Compiler Name Vendor XML File
ARM® ARM Keil armcc.xml

armclang.xml
Visual C++ Microsoft cl.xml
Clang Not applicable clang.xml
CodeWarrior NXP cw_ppc.xml

cw_s12z.xml
cx6808 Cosmic cx6808.xml

11 Troubleshooting in Polyspace Code Prover Server

11-28

Compiler Name Vendor XML File
Diab Wind River diab.xml
gcc Not applicable gcc.xml
Green Hills Green Hills Software ghs_arm.xml

ghs_arm64.xml
ghs_i386.xml
ghs_ppc.xml
ghs_rh850.xml
ghs_tricore.xml

IAR Embedded Workbench IAR iar.xml
iar-arm.xml
iar-avr.xml
iar-msp430.xml
iar-rh850.xml
iar-rl78.xml

Renesas Renesas renesas-rh850.xml
renesas-rl78.xml
renesas-rx.xml

TASKING® Altium tasking.xml
tasking-166.xml
tasking-850.xml
tasking-arm.xml

Tiny C Not applicable tcc.xml
TM320 and its derivatives Texas Instruments ti_arm.xml

ti_c28x.xml
ti_c6000.xml
ti_msp430.xml

xc8 (PIC) Microchip xc8.xml

 Compiler Not Supported for Project Creation from Build Systems

11-29

Slow Build Process When Polyspace Traces the Build

Issue
In some cases, your build process can run slower when Polyspace traces the build.

Cause
Polyspace caches information in files stored in the system temporary folder, such as
C:\Users\User_Name\AppData\Local\Temp, in Windows. Your build can take a long
time to perform read/write operations to this folder. Therefore, the overall build process is
slow.

Solution
You can work around the slow build process by changing the location where Polyspace
stores cache information. For instance, you can use a cache path local to the drive from
which you run build tracing. To create and use a local folder ps_cache for storing cache
information, use the advanced option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field
Add advanced configure options.

• If you trace your build from the DOS/ UNIX or MATLAB command line, use this flag
with the polyspace-configure command.

For more information, see polyspace-configure.

11 Troubleshooting in Polyspace Code Prover Server

11-30

Check if Polyspace Supports Build Scripts

Issue
This topic is relevant only if you are creating a Polyspace project in Windows from your
build scripts.

When Polyspace traces your build script in a Windows console application other than
cmd.exe, the command fails. However, the build command by itself executes to
completion.

For instance, your build script executes to completion from the Cygwin shell. However,
when Polyspace traces the build, the build script throws an error.

Possible Cause
When you launch a Windows console application, your environment variables are
appropriately set. Alternate console applications such as the Cygwin shell can set your
environment differently from cmd.exe.

Polyspace attempts to trace your build script with the assumption that the script runs to
completion in cmd.exe. Therefore, even if your script runs to completion in the alternate
console application, when Polyspace traces the build, the script can fail.

Solution
Make sure that your build script executes to completion in the cmd.exe interface. If the
build executes successfully, create a wrapper .bat file around your script and trace this
file.

For instance, before you trace a build command that executes to completion in the
Cygwin shell, do one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build script. For instance, if
you use a script build.sh to build your code, enter the following command at the
DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh
• Find the full path to your build script and then run this script from cmd.exe.

 Check if Polyspace Supports Build Scripts

11-31

For instance, enter the following command at the DOS command line:

cmd.exe /C path_to_script

path_to_script is the full path to your build script. For instance, C:\my_scripts
\build.sh.

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from
cmd.exe. For instance, on the command-line, do the following to create a Polyspace
options file.

1 Enter your build commands in a .bat file.

rem @echo off
cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh

Name the file, for instance, launching.bat.
2 Trace the build commands in the .bat file and create a Polyspace options file.

"C:\Program Files\MATLAB\R2017b\polyspace\bin\polyspace-configure.exe"
 -output-options-file myOptions.txt launching.bat

You can now run polyspace-code-prover-server on the options file.

11 Troubleshooting in Polyspace Code Prover Server

11-32

Troubleshooting Project Creation from MinGW Build

Issue
You create a project from a MinGW build, but get an error when running an analysis on
the project. The error message comes from using one of these keywords: __declspec,
__cdecl, __fastcall, __thiscall or __stdcall.

Cause
When you create a project from a MinGW build, the project uses a GNU compiler.
Polyspace does not recognize these keywords for the GNU compilers.

Solution
Replace these keywords with equivalent keywords just for the purposes of analysis.

Before analysis, for the option Preprocessor definitions (-D), enter:

• __declspec(x)=__attribute__((x))
• __cdecl=__attribute__((__cdecl__))
• __fastcall=__attribute__((__fastcall__))
• __thiscall=__attribute__((__thiscall__))
• __stdcall=__attribute__((__stdcall__))

If you are running Polyspace on the command line in a UNIX shell, add double quotes
around the -D option. For instance, use:

"-D __cdecl=__attribute__((__cdecl__))"

 Troubleshooting Project Creation from MinGW Build

11-33

Troubleshooting Project Creation from Visual Studio
Build

If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

See Also
polyspace-configure

11 Troubleshooting in Polyspace Code Prover Server

11-34

Error Processing Macro with Semicolon in Build System

Issue
You see this error when creating a Polyspace project or options file from your build
system:

Could not process macro containing a semicolon

Cause
Some options in your build system use semicolons in the replacement list of a macro.
Automatic project creation from build systems does not support this usage. For instance,
a macro OK with this replacement list can cause issues:

{printf("OK");flush();}

The use of semicolons in replacement lists is not supported because a Polyspace project
or options file created from your build system itself uses semicolon separators to separate
macro definitions. For details on the Polyspace options that define macros, see:

• Preprocessor definitions (-D): This option defines macros.
• -options-for-sources: This option collects several macro definitions, separated by

semicolon.

Solution
Define the macro in a header file instead of in the build system. For instance, define the
macro OK like this in a header file:

#ifdef OK_DEFINED
#undef OK_DEFINED
#define OK {printf("OK");flush();}
#endif

Provide the header file only for the purposes of Polyspace analysis using the option
Include (-include).

 Error Processing Macro with Semicolon in Build System

11-35

Could Not Find Include File

Issue
You see a warning like this when creating a Polyspace project from AUTOSAR XML and
source files:

Could not find include file "MemMap.h"

If you use variables or functions declared in the missing include file, you can also see
errors later.

Cause
By default, Polyspace searches only in the source folder for #include-d files. If an
include file is not present directly in the source folder, Polyspace cannot find it. For
instance, the missing include file can be in a subfolder of the source folder.

Solution
If you want to expand the search path for include files, explicitly add new folders.

• In the Polyspace user interface, use the field Specify additional include folders.

See “Create Polyspace Analysis Configuration from AUTOSAR Specifications” on page
2-15.

• At the command-line, use the option -I.

See polyspace-autosar.

This method has the restriction that the include folder must be a subfolder of the source
folder. To add include folders that are not in the source folder hierarchy, use the advanced
option:

If you use a build command for compilation, you can extract compilation options such as
path to includes from your build command. See “Create Polyspace Analysis Configuration
from AUTOSAR Specifications” on page 2-15.

11 Troubleshooting in Polyspace Code Prover Server

11-36

See Also
polyspace-autosar Command

Related Examples
• “Create Polyspace Analysis Configuration from AUTOSAR Specifications” on page 2-

15

 See Also

11-37

Conflicting Universal Unique Identifiers (UUIDs)

Issue
You see one or both of these errors when creating a Polyspace project from AUTOSAR
XML and source files:

• Elements "/pkg/swc002/bhv/twosec" and "/pkg/swc002/bhv/step" in
file $file{C:/AUTOSAR/arxml/mSwc002_component.arxml}{332}
have the same UUID "5bdd54d5-50ae-4ad3-bdea-e0b0ab2bcab6".
Each of these elements should have its own unique UUID.

• 'Element "/AUTOSAR" has both UUID
"ECUS:6b411924-70da-40a5-85f5-65d5630ea0cb"
and "ECUS:48ea040a-c40d-4ee0-ae61-8a6ccc9cb18d".
You should specify only one UUID.

Solution
Investigate why multiple elements have the same UUID, or the same element has two
different UUID-s. Fix the issue if possible.

If you do not own the AUTOSAR XML with the conflicting UUID-s or do not want to fix the
issue because it represents work in progress, use the options -Eno-autosar-
xmlReaderSameUuidForDifferentElements and -Eno-autosar-
xmlReaderTooManyUuids. The analysis ignores the issue of conflicting UUID-s and
continues with a warning. For conflicting UUID-s, the analysis stores the last element
read.

The subsequent analyses continue to use the warning mode. To revert back to the error
mode, use the option -Eautosar-xmlReaderSameUuidForDifferentElements and -
Eautosar-xmlReaderTooManyUuids.

See Also
polyspace-autosar

11 Troubleshooting in Polyspace Code Prover Server

11-38

Related Examples
• “Create Polyspace Analysis Configuration from AUTOSAR Specifications” on page 2-

15

 See Also

11-39

Data Type Not Recognized

Issue
You see an error when creating a Polyspace project from AUTOSAR XML and source files.
The error suggests that a data type used in your source code is not recognized.

Cause
When creating a Polyspace project, the software parses your AUTOSAR XML
specifications and imports the data types that are required by the Software Components
in the scope of verification. If you use a data type that is not in the Software Component
specification, the analysis does not recognize this data type.

You can find the data types imported using the file
autosar_model_key_elements.html in the AUTOSAR subfolder of your project folder.
The file has data types in the DataTypes section in this format:

indirect pkg.types.app.Array_2_n320to320
indirect pkg.types.app.Boolean

The text indirect in the first column indicates that the data types are automatically
imported.

Solution
You can force import of data types that are not defined for Software Components that you
are verifying. Use the option -autosar-datatype. See polyspace-autosar.

The file autosar_model_key_elements.html shows data types that are explicitly
imported using entries like this:

name tst003.typ.app.Boolean

The text name in the first column indicates that the data type
tst003.typ.app.Boolean is explicitly imported for the analysis.

11 Troubleshooting in Polyspace Code Prover Server

11-40

See Also
polyspace-autosar

Related Examples
• “Create Polyspace Analysis Configuration from AUTOSAR Specifications” on page 2-

15

 See Also

11-41

Undefined Identifier Error

Issue
Polyspace verification fails during the compilation phase with a message about undefined
identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it
cannot identify the variable type.

Possible Cause: Missing Files
The source code you provided does not contain the variable definition. For instance, the
variable is defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include
file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Code Prover).

• At the command line, use the flag -I with the polyspace-code-prover-server
command.

For more information, see -I.

Possible Cause: Unrecognized Keyword
The variable represents a keyword that your compiler recognizes but is not part of the
ANSI C standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

11 Troubleshooting in Polyspace Code Prover Server

11-42

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove
the keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the
compilation error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option.
Replace the compiler-specific keyword with an equivalent keyword from the ANSI C
Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives.

Specify that header file using an analysis option.

For information on the analysis option, see Include (-include). For a sample
header file, see “Gather Compilation Options Efficiently” on page 5-32.

Possible Cause: Declaration Embedded in #ifdef Statements
The variable is declared in a branch of an #ifdef macro_name preprocessor directive.
For instance, the declaration of a variable max_power occurs as follows:

#ifdef _WIN32
 #define max_power 31
#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined
and execute the #ifdef branch. However, the Polyspace compilation might not consider
the macro as defined. Therefore, the #ifdef branch is not executed and the variable
max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to
emulate a Visual C++ compiler, set the Compiler to visual12.0. See “Target and
Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

 Undefined Identifier Error

11-43

Note If you create a Polyspace by tracing your build commands, most Target &
Compiler options are automatically set.

Possible Cause: Project Created from Non-Debug Build
This can be a possible cause only if the undefined identifier occurs in an assert
statement (or an equivalent Visual C++ macro such as ASSERT or VERIFY).

Typically, you come across this error in the following way. You create a Polyspace project
from a build system in non-debug mode. When you run an analysis on the project, you
face a compilation error from an undefined identifier in an assert statement. You find
that the identifier my_identifier is defined in a #ifndef NDEBUG statement, for
instance as follows:

#ifndef NDEBUG
int my_identifier;
#endif

The C standard states that when the NDEBUG macro is defined, all assert statements must
be disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source
code in your IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed
during preprocessing. For instance, in the preceding example, my_identifier is not
defined. If my_identifier occurs only in assert statements, it is not used either,
because NDEBUG disables assert statements. You do not have compilation errors from
undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because
the software uses assert statements internally to enhance verification.

When you create a Polyspace project from your build system, if your build system defines
the NDEBUG macro, it is also defined for your Polyspace project. Polyspace removes code
in a #ifndef NDEBUG statement during preprocessing, but does not disable assert
statements. If assert statements in your code rely on the code in a #ifndef NDEBUG
statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.

11 Troubleshooting in Polyspace Code Prover Server

11-44

• assert statements are not disabled. When my_identifier is used in an assert
statement, you get an error because of undefined identifier my_identifier.

Solution

To work around this issue, create a Polyspace project from your build system in debug
mode. When you execute your build system in debug mode, NDEBUG is not defined. When
you create a Polyspace project from this build, NDEBUG is not defined for your Polyspace
project.

Depending on your project settings, use the option that enables building in debug mode.
For instance, if your build system is gcc-based, you can define the DEBUG macro and
undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

Alternatively, you can disable the assert statements in your preprocessed code using the
option Preprocessor definitions (-D). However, Polyspace will not be able to
emulate the assert statements.

 Undefined Identifier Error

11-45

Unknown Function Prototype Error

Issue
During the compilation phase, the software displays a warning or error message about
unknown function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it
cannot identify the data types of the function argument and return value, and has to infer
them from the calls to the function.

To determine the data types for such functions, Polyspace follows the C99 Standard
(ISO/IEC 9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function. For

instance, if the function takes one double argument in the first call, for subsequent
calls, the software assumes that it takes one double argument. If you pass an int
argument in a subsequent call, a conversion from int to double takes place.

During the linking phase, if a mismatch occurs between the number or type of arguments
or the return type in different compilation units, the verification stops. For more
information, see “Conflicting Declarations in Different Translation Units” on page 11-68.

Cause
The source code you provided does not contain the function prototype. For instance, the
function is declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution
Search for the function declaration in your source repository.

11 Troubleshooting in Polyspace Code Prover Server

11-46

If you find the function declaration in an include file, add the folder that contains the
include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Code Prover).

• At the command line, use the flag -I with the polyspace-code-prover-server
command.

For more information, see -I.

 Unknown Function Prototype Error

11-47

Error Related to #error Directive

Issue
The analysis stops with a message containing a #error directive. For instance, the
following message appears: #error directive: !Unsupported platform;
stopping!.

Cause
You typically use the #error directive in your code to trigger a fatal error in case certain
macros are not defined. Your compiler implicitly defines the macros, therefore the error is
not triggered when you compile your code. However, the default Polyspace compilation
does not consider the macros as defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C
compiler, for instance, the compiler considers the macro __GNUC__ as defined and the
error does not occur. However, if you use the default Polyspace compilation, it does not
consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)
#define MYINT int
#elif defined(__GNUC__)
#define MYINT long
#else
#error !Unsupported platform; stopping!
#endif

Solution
For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines
some of the compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of

the compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

11 Troubleshooting in Polyspace Code Prover Server

11-48

For more information, see Preprocessor definitions (-D).

 Error Related to #error Directive

11-49

Large Object Error

Issue
The analysis stops during compilation with a message indicating that an object is too
large.

Cause
The error happens when the software detects an object such as an array, union, structure,
or class, that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large
in the following example. You specify a pointer size of 16 bits. The maximum object size
allocated to a pointer, and therefore the maximum allowed size for an object, can be 216-1
bytes. However, you declare a structure as follows:

• struct S
{
 char tab[65536];
}s;

• struct S
{
 char tab[65534];
 int val;
}s;

Solution
1 Check the pointer size that you specified through your target processor type. For

more information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16
bits.

11 Troubleshooting in Polyspace Code Prover Server

11-50

2 Change your code or specify a different pointer size.

For instance, you can:

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely to be
the same as the pointer size on your target architecture. Therefore, your
declaration might cause errors on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define
your own target processor type. For more information on defining your own
processor type, see Generic target options.

 Large Object Error

11-51

Note Polyspace imposes an internal limit of 128 MB on the size of data
structures. Even if your target processor type specification allows data structures
of larger size, this internal limit constrains the data structure sizes.

11 Troubleshooting in Polyspace Code Prover Server

11-52

Errors Related to Generic Compiler
If you use a generic compiler, you can encounter this issue. For more information, see
Compiler (-compiler).

Issue
The analysis stops with an error message related to a non-ANSI C keyword, for instance,
data or attributes such as __attribute__((weak)).

Depending on the location of the keyword, the error message can vary. For instance, this
line causes the error message: expected a ";".

data int tab[10];

Cause
The generic Polyspace compiler supports only ANSI C keywords. If you use a language
extension, the generic compiler does not recognize it and treats the keyword as a regular
identifier.

Solution
Specify your compiler by using the option Compiler (-compiler).

If your compiler is not directly supported or is not based on a supported compiler, you can
use the generic compiler. To work around the compilation errors:

• If the keyword is related to memory modelling, remove it from the preprocessed code.
For instance, to remove the data keyword, enter data= for the option Preprocessor
definitions (-D).

• If the keyword is related to an attribute, remove attributes from the preprocessed
code. Enter __attribute__(x)= for the option Preprocessor definitions (-
D).

If your code has this line:

void __attribute__ ((weak)) func(void);

And you remove attributes, the analysis reads the line as:

 Errors Related to Generic Compiler

11-53

void func(void);

When you use these workarounds, your source code is not altered.

11 Troubleshooting in Polyspace Code Prover Server

11-54

Errors Related to Keil or IAR Compiler
If you use the compiler, Keil or IAR, you can encounter this issue. For more information,
see Compiler (-compiler).

Missing Identifiers
Issue

The analysis stops with the error message, expected an identifier, as if an
identifier is missing. However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs.

For a list of keywords that are removed, see “Supported Keil or IAR Language
Extensions” on page 5-26.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the
macros __PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

 Errors Related to Keil or IAR Compiler

11-55

Errors Related to Diab Compiler
If you choose diab for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a keyword specific to the Diab
compiler. For instance, you see an error related to the restrict keyword.

Cause
You typically use a compiler flag to enable the keyword. The Polyspace analysis does not
enable these keywords by default. You have to make Polyspace aware of your compiler
flags.

The Polyspace analysis does not enable these keywords by default to prevent compilation
errors. Another user might not enable the keyword and instead use the keyword name as
a regular identifier. If Polyspace treats the identifier as a keyword, a compilation error
will occur.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface of the Polyspace desktop products, you can enter the
command-line option in the field Other. You can enter the option multiple times.

The argument of -compiler-parameter depends on the keyword that causes the error.
Once you enable the keyword, do not use the keyword name as a regular identifier. For
instance, once you enable the keyword pixel, do not use pixel as a variable name. The
statement int pixel = 1 causes a compilation error.

• restrict keyword:

You typically use the compiler flag -Xlibc-new or -Xc-new. For your Polyspace
analysis, use

-compiler-parameter -Xc-new

11 Troubleshooting in Polyspace Code Prover Server

11-56

The following code will not compile with Polyspace unless you specify the compiler
flag.

int sscanf(const char *restrict, const char *restrict, ...);
• PowerPC AltiVec vector extensions such as the vector type qualifier:

You typically use the compiler flag -tPPCALLAV:. For your Polyspace analysis, use

-compiler-parameter -tPPCALLAV:

The following code will not compile with Polyspace unless you specify the compiler
flag.

vector unsigned char vbyte;
vector bool vbool;
vector pixel vpx;

int main(int argc, char** argv)
{
 return 0;
}

• Extended keywords such as pascal, inline, packed, interrupt, extended, __X,
__Y, vector, pixel, bool and others:

You typically use the compiler flag -Xkeywords=. For your Polyspace analysis, use

-compiler-parameter -Xkeywords=0xFFFFFFFF

The following code will not compile with Polyspace unless you specify the compiler
flag.

packed(4) struct s2_t {
 char b;
 int i;
} s2;

packed(4,2) struct s3_t {
 char b;
} s3;

int pascal foo = 4;

int main(int argc, char** argv) {
 foo++;

 Errors Related to Diab Compiler

11-57

 return 0;
}

11 Troubleshooting in Polyspace Code Prover Server

11-58

Errors Related to Green Hills Compiler
If you choose greenhills for the option Compiler (-compiler), you encounter this
issue.

Issue
During Polyspace analysis, you see an error related to vector data types specific to Green
Hills target rh850. For instance, you see an error related to identifier __ev64_u16__.

Cause
When compiling code using the Green Hills compiler with target rh850, to enable single
instruction multiple data (SIMD) vector instructions, you specify two flags:

• -rh850_simd: You enable intrinsic functions that support SIMD vector instructions.
The functions are defined in your compiler header files. These data types are available:

• __ev64_u16__
• __ev64_s16__
• __ev64_u32__
• __ev64_s32__
• __ev64_u64__
• __ev64_s64__
• __ev64_opaque__
• __ev128_opaque__

• -rh850_fpsimd: You enable intrinsic functions that support floating-point SIMD
vector instructions. The functions are defined in your compiler header files. These data
types are available:

• __ev128_f32__
• __ev256_f32__

The Polyspace analysis does not enable SIMD support by default. You must identify your
compiler flags to Polyspace.

 Errors Related to Green Hills Compiler

11-59

Solution
In your Polyspace analysis, use the command-line option -compiler-parameter. In the
user interface, you can enter the command-line option in the Other field, under the
Advanced Settings in the Configuration pane.

• -rh850_simd: For your Polyspace analysis, use

-compiler-parameter -rh850_simd
• -rh850_fpsimd: For your Polyspace analysis, use

-compiler-parameter -rh850_fpsimd

Note

• __ev128_opaque__ is 16 bytes aligned in Polyspace.
• __ev256_f32__ is 32 bytes aligned in Polyspace.

11 Troubleshooting in Polyspace Code Prover Server

11-60

Errors Related to TASKING Compiler
If you choose tasking for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a Special Function Register data
type.

Cause
When compiling with the TASKING compiler, you typically use the following compiler
flags to specify where Special Function Register (SFR) data types are declared:

• --cpu=xxx: The compiler implicitly #includes the file sfr/regxxx.sfr in your
source files. Once #include-ed, you can use Special Function Registers (SFR-s)
declared in that .sfr file.

• --alternative-sfr-file: The compiler uses an alternative SFR file instead of the
regular SFR file. You can use Special Function Registers (SFR-s) declared in that
alternative SFR file.

If you specify the TASKING compiler for your Polyspace analysis, the analysis makes the
following assumptions about these compiler flags:

• --cpu=xxx: The analysis chooses a specific value of xxx. If you use a different value
with your TASKING compiler, you can encounter an error during Polyspace analysis.

The xxx value that the Polyspace analysis uses depends on your choice of Target
processor type (-target):

• tricore: tc1793b
• c166: xc167ci
• rh850: r7f701603
• arm: ARMv7M

• --alternative-sfr-file: The analysis assumes that you do not use an alternative
SFR file. If you use one, you can encounter an error.

 Errors Related to TASKING Compiler

11-61

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface, you can enter the command-line option in the field Other. You
can enter the option multiple times.

• --cpu=xxx: For your Polyspace analysis, use

-compiler-parameter --cpu=xxx

Here, xxx is the value that you use when compiling with your compiler.
• --alternative-sfr-file: For your Polyspace analysis, use

-compiler-parameter --alternative-sfr-file

If you still encounter an error because Polyspace is not able to locate your .asfr file,
explicitly #include your .asfr file in the preprocessed code using the option
Include (-include).

Typically, the path to the file is Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in
C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag
-Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

You can also encounter the same issue with alternative sfr files when you trace your
build command. For more information, see “Requirements for Project Creation from
Build Systems” on page 5-23.

11 Troubleshooting in Polyspace Code Prover Server

11-62

Errors from In-Class Initialization (C++)
When a data member of a class is declared static in the class definition, it is a static
member of the class. You must initialize static data members outside the class because
they exist even when no instance of the class has been created.

class Test
{
public:

 static int m_number = 0;
};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp
class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

 Errors from In-Class Initialization (C++)

11-63

Errors from Double Declarations of Standard Template
Library Functions (C++)

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}
void f(const std::list<int*>::iterator it) {}
void g(const std::list<int*>::const_reverse_iterator it) {}
void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined
error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more
information, see No STL stubs (-no-stl-stubs).

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run analysis at the command line with the following
flag. The flag defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see Preprocessor
definitions (-D).

11 Troubleshooting in Polyspace Code Prover Server

11-64

Errors Related to GNU Compiler
If you choose gnu for the option Compiler (-compiler), you can encounter this issue.

Issue
The Polyspace analysis stops with a compilation error.

Cause
You are using certain advanced compiler-specific extensions that Polyspace does not
support. See “Limitations”.

Solution
For easier portability of your code, avoid using the extensions.

If you want to use the extensions and still analyze your code, wrap the unsupported
extensions in a preprocessor directive. For instance:

#ifdef POLYSPACE
 // Supported syntax
#else
 // Unsupported syntax
#endif

For regular compilation, do not define the macro POLYSPACE. For Polyspace analysis,
enter POLYSPACE for the option Preprocessor definitions (-D).

If the compilation error is related to assembly language code, use the option -asm-begin
-asm-end.

 Errors Related to GNU Compiler

11-65

Errors Related to Visual Compilers
The following messages appear if the compiler is based on a Visual compiler. For more
information, see Compiler (-compiler).

Import Folder
When a Visual application uses #import directives, the Visual C++ compiler generates a
header file with extension .tlh that contains some definitions. To avoid compilation
errors during Polyspace analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). In order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

Original code:

11 Troubleshooting in Polyspace Code Prover Server

11-66

test1.cpp type.h test2.cpp
#pragma pack(4)

#include "type.h"

struct A
{
 char c ;
 int i ;
} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "test1.cpp"
(class types do not match)
 struct A
 ^
 detected during compilation of secondary translation unit
"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-
ignore-pragma-pack).

C++/CLI
Polyspace does not support Microsoft C++/CLI, a set of language extensions for .NET
programming.

You can get errors such as:

error: name must be a namespace name
| using namespace System;

Or:

error: expected a declaration
| public ref class Form1 : public System::Windows::Forms::Form

 Errors Related to Visual Compilers

11-67

Conflicting Declarations in Different Translation Units

Issue
The analysis shows an error or warning similar to one of these error messages:

• Declaration of [...] is incompatible with a
declaration in another translation unit ([...])

This message appears when the conflicting declarations do not come from the same
header file.

• When one of the conflicting declarations is in a header file.

Declaration of [...] had a different meaning during compilation of [...] ([...])

This message appears when the conflicting declarations come from the same header
file included in different source files.

The error indicates that the same variable or function or data type is declared differently
in different translation units. The conflicting declarations violate the One Definition Rule
(cf. C++Standard, ISO/IEC 14882:2003, Section 3.2). When conflicting declarations
occur, Polyspace Code Prover does not choose a declaration and continue analysis.

Common compilation toolchains often do not store data type information during the
linking process. The conflicting declarations do not cause errors with your compiler.
Polyspace Code Prover follows stricter standards for linking to guarantee the absence of
certain run-time errors.

To identify the root cause of the error:

1 From the error message, identify the two source files with the conflicting
declarations.

For instance, an error message looks like this message:

C:\field.h, line 1: declaration of class "a_struct" had
 a different meaning during compilation of "file1.cpp"
| struct a_struct {
|
| Detected during compilation of secondary translation unit "file2.cpp"

11 Troubleshooting in Polyspace Code Prover Server

11-68

The message shows that the structure a_struct has a conflicting declaration in
file1.cpp and file2.cpp, both of which include the header file field.h.

An alternative error message can look like this:

C:\field2.h, line 1: declaration of class "a_struct" had
 is incompatible with a declaration in another translation unit
| the other declaration is at line 1 of field1.h"
| struct a_struct {
|
| Detected during compilation of secondary translation unit "file2.cpp"

The message shows that the structure a_struct has a conflicting declaration in
field2.h and field.h. The header file field2.h is included in the source file
file2.cpp.

2 Try to identify the conflicting declarations in the source files.

Otherwise, open the translation units containing these files. Sometimes, the
translation units or preprocessed files show the conflicting declarations more clearly
than the source files because the preprocessor directives, such as #include and
#define statements, are replaced appropriately and the macros are expanded.

a Rerun the analysis with the flag -keep-relaunch-files so that all translation
units are saved. In the user interface, enter the flag for the option Other.

The translation units or preprocessed files are stored in a zipped file ci.zip in a
subfolder .relaunch of the results folder.

b Unzip the contents of ci.zip.

The preprocessed files have the same name as the source files. For instance, the
preprocessed file with file1.cpp is named file1.ci.

When you open the preprocessed files at the line numbers stated in the error
message, you can spot the conflicting declarations.

Possible Cause: Variable Declaration and Definition Mismatch
A variable declaration does not match its definition. For instance:

• The declaration and definition use different data types.
• The variable is declared as signed, but defined as unsigned.

 Conflicting Declarations in Different Translation Units

11-69

• The declaration and definition uses different type qualifiers.
• The variable is declared as an array, but defined as a non-array variable.
• For an array variable, the declaration and definition use different array sizes.

In this example, the code shows a linking error because of a mismatch in type qualifiers.
The declaration in file1.c does not use type qualifiers, but the definition in file2.c
uses the volatile qualifier.

file1.c file2.c
extern int x;

void main(void)
{/* Variable x used */}

 volatile int x;

In these cases, you can typically spot the difference by looking at the source files. You do
not need to see the preprocessed files.

Solution

Make sure that the variable declaration matches its definition.

Possible Cause: Function Declaration and Definition Mismatch
A function declaration does not match its definition. For instance:

• The declaration and definition use different data types for arguments or return values.
• The declaration and definition use a different number of arguments.
• A variable-argument or varargs function is declared in one function, but it is called in

another function without a previous declaration.

In this case, the error message states that the required prototype for the function is
missing.

In this example, the code shows a linking error because of a mismatch in the return type.
The declaration in file1.c has return type int, but the definition in file2.c has
return type float.

11 Troubleshooting in Polyspace Code Prover Server

11-70

file1.c file2.c
int input(void);

void main() {
 int val = input();
}

float input(void) {
 float x = 1.0;
 return x;
}

In these cases, you can typically find the difference by looking at the source files. You do
not need to see the preprocessed files.

Solution

Make sure that the function declaration matches its definition.

Even if your build process allows these errors, you can have unexpected results during
run time. If a function declaration and definition with conflicting prototypes exist in your
code, when you call the function, the result can be unexpected.

For a variable-argument or varargs function, declare the function before you call it. If you
do not want to change your source code, you can work around this linking error.

1 Add the function declaration in a separate file.
2 Only for the purposes of verification, #include this file in every source file by using

the option Include (-include).

Possible Cause: Conflicts from Unrelated Declarations
You use the same identifier name for two unrelated objects. These are some common
reasons for unrelated objects in the same Polyspace project:

• You intended to declare the objects static so that they do not have external linkage,
but omitted the static specifier.

• You declared the same object in several source files instead of putting the declaration
in a header file and including in the source files.

• You created a Polyspace project from a build command using the polyspace-
configure command. The build command created several independent binaries, but
files involved in all the binaries were collected in one Polyspace project.

 Conflicting Declarations in Different Translation Units

11-71

Solution

Depending on the root cause for unrelated objects using the same name, use an
appropriate solution.

If your Polyspace project was created from a build command and source files for
independent binaries were clubbed together, split the project into modules when tracing
your build command. See polyspace-configure.

Possible Cause: Macro-dependent Definitions
A variable definition is dependent on a macro being defined earlier. One source file
defines the macro while another does not, causing conflicts in variable definitions.

In this example, file1.cpp and file2.cpp include a header file field.h. The header
file defines a structure a_struct that is dependent on a macro definition. Only one of the
two files, file2.cpp, defines the macro DEBUG. The definition of a_struct in the
translation unit with file1.cpp differs from the definition in the unit with file2.cpp.

file1.cpp file2.cpp
#include "field.h"

int main()
{
 a_struct s;
 init_a_struct(&s);
 return 0;
}

#define DEBUG

#include <string.h>
#include "field.h"

void init_a_struct(a_struct* s)
{
 memset(s, 0, sizeof(*s));
}

field.h:

struct a_struct {
 int n;
#ifdef DEBUG
 int debug;
#endif
};

When you open the preprocessed files file1.ci and file2.ci, you see the conflicting
declarations.

11 Troubleshooting in Polyspace Code Prover Server

11-72

file1.ci file2.ci
struct a_struct {
 int n;

};

struct a_struct {
 int n;

 int debug;

};

Solution

Avoid macro-dependent definitions. Otherwise, fix the linking errors. Make sure that the
macro is either defined or undefined on all paths that contain the variable definition.

Possible Cause: Keyword Redefined as Macro
A keyword is redefined as a macro, but not in all files.

In this example, bool is a keyword in file1.cpp, but it is redefined as a macro in
file2.cpp.

file1.cpp file2.cpp
#include "bool.h"

int main()
{
 return 0;
}

#define false 0
#define true (!false)

#include "bool.h"

bool.h:

template <class T>
struct a_struct {
 bool flag;
 T t;
 a_struct() {
 flag = true;
 }
};

Solution

Be consistent with your keyword usage throughout the program. Use the keyword defined
in a standard library header or use your redefined version.

 Conflicting Declarations in Different Translation Units

11-73

Possible Cause: Differences in Structure Packing
A #pragma pack(n) statement changes the structure packing alignment, but not in all
files. See also “#pragma Directives” (Polyspace Code Prover).

In this example, the default packing alignment is used in file1.cpp, but a #pragma
pack(1) statement enforces a packing alignment of 1 byte in file2.cpp.

file1.cpp file2.cpp
int main()
{
 return 0;
}

#pragma pack(1)

#include "pack.h"

pack.h:

struct a_struct {
 char ch;
 short sh;
};

Solution

Enter the #pragma pack(n) statement in the header file so that it applies to all source
files that include the header.

11 Troubleshooting in Polyspace Code Prover Server

11-74

Errors from Conflicts with Polyspace Header Files

Issue
You see compilation errors from header files included by Polyspace.

For instance, the error message refers to one of the subfolders of polyspaceroot
\polyspace\verifier\cxx\include.

Typically, the error message is related to a standard library function.

Cause
If your compiler defines a standard library function or another construct and you do not
provide the path to your compiler header files, Polyspace uses its own implementation of
the function.

If your compiler definitions differ from the corresponding Polyspace definitions, the
verification stops with an error.

Solution
Specify the folder containing your compiler header files.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Code Prover).

• At the command line, use the flag -I with the polyspace-code-prover-server
command.

For more information, see -I.

For compilation with GNU C on UNIX-based platforms, use /usr/include. On
embedded compilers, the header files are typically in a subfolder of the compiler
installation folder. Examples of include folders are given for some compilers.

• Wind River Diab: For instance, /apps/WindRiver/Diab/5.9.4/diab/5.9.4.8/
include/.

 Errors from Conflicts with Polyspace Header Files

11-75

• IAR Embedded Workbench: For instance, C:\Program Files\IAR Systems
\Embedded Workbench 7.5\arm\inc.

• Microsoft Visual Studio: For instance, C:\Program Files\Microsoft Visual
Studio 14.0\VC\include.

Consult your compiler documentation for the path to your compiler header files.
Alternatively, see “Provide Standard Library Headers for Polyspace Analysis” on page 5-
21.

11 Troubleshooting in Polyspace Code Prover Server

11-76

C++ Standard Template Library Stubbing Errors

Issue
The analysis stops with an error message that refers to class templates such as map and
vector from the Standard Template Library.

Often, the error message states that either an operator cannot be found or more than one
operator matches the given operands.

Cause
Polyspace software provides an efficient implementation of all class templates from the
Standard Template Library (STL). If your source code redeclares the templates, the
analysis can stop with an error message.

Solution
To use your own implementations of templates from the Standard Template Library:

1 Disable the Polyspace implementations using the option No STL stubs (-no-stl-
stubs).

2 Add the folders containing your implementations to the verification.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User
Interface” (Polyspace Code Prover).

• At the command line, use the flag -I with the polyspace-code-prover-
server command.

For more information, see -I.

Note Using your own template definitions can cause other compilation and linking
errors.

 C++ Standard Template Library Stubbing Errors

11-77

Lib C Stubbing Errors
Extern C Functions
Some functions may be declared inside an extern "C" { } block in some files, but not
in others. In this case, the linkage is different which causes a link error, because it is
forbidden by the ANSI standard.

Original code:

extern "C" {
 void* memcpy(void*, void*, int);
}
class Copy
{
public:
 Copy() {};
 static void* make(char*, char*, int);
};
void* Copy::make(char* dest, char* src, int size)
{
 return memcpy(dest, src, size);
}

Error message:
Pre-linking C++ sources ...

<results_dir>/test.cpp, line 2: error: declaration of function "memcpy"
is incompatible with a declaration in another translation unit
(parameters do not match)
| the other declaration is at line 4096 of "__polyspace__stdstubs.c"
| void* memcpy(void*, void*, int);
| ^
| detected during compilation of secondary translation unit "test.cpp"

The function memcpy is declared as an external "C" function and as a C++ function. It
causes a link problem. Indeed, function management behavior differs whether it relates to
a C or a C++ function.

When such error happens, the solution is to homogenize declarations, i.e. add extern
"C" { } around previous listed C functions.

Another solution consists in using the permissive option -no-extern-C. It removes all
extern "C" declarations.

11 Troubleshooting in Polyspace Code Prover Server

11-78

Functional Limitations on Some Stubbed Standard ANSI
Functions
• signal.h is stubbed with functional limitations: signal and raise functions do not

follow the associated functional model. Even if the function raise is called, the stored
function pointer associated to the signal number is not called.

• No jump is performed even if the setjmp and longjmp functions are called.
• errno.h is partially stubbed. Some math functions do not set errno, but instead,

generate a red error when a range or domain error occurs with ASRT checks.

You can also use the compile option POLYSPACE_STRICT_ANSI_STANDARD_STUBS (-D
flag). This option only deactivates extensions to ANSI C standard libC, including the
functions bzero, bcopy, bcmp, chdir, chown, close, fchown, fork, fsync, getlogin,
getuid, geteuid, getgid, lchown, link, pipe, read, pread, resolvepath, setuid,
setegid, seteuid, setgid, sleep, sync, symlink, ttyname, unlink, vfork, write,
pwrite, open, creat, sigsetjmp, __sigsetjmp, and siglongjmpare.

 Lib C Stubbing Errors

11-79

Errors from Using Namespace std Without Prefix

Issue
The Polyspace analysis stops with an error message such as:

error: the global scope has no "modfl"

The line highlighted in the error uses a function from the standard library without the
std:: prefix.

Cause
Some compilers allow using members of the standard library namespace without
explicitly specifying the std:: prefix. For such compilers, your code can contain lines like
this:

using ::mblen;

where mblen is a member of the C++ standard library. Polyspace compilation considers
the members as part of the global namespace and shows an error.

Solution
It is a good practice to qualify members of the standard library with the std:: prefix. For
instance, to use the mblen function in the preceding example, rewrite the line as:

using std::mblen;

To continue to retain the current code and work around the Polyspace error, use the
analysis option -using-std. If you are running the analysis in the Polyspace user
interface, enter the option in the Other field. See Other.

11 Troubleshooting in Polyspace Code Prover Server

11-80

Errors from Assertion or Memory Allocation Functions

Issue
Polyspace uses its own implementation of standard library functions for more efficient
analysis. If you redefine a standard library function and provide the function body to
Polyspace, the analysis uses your definition.

However, for certain standard library functions, Polyspace continues to use its own
implementations, even if you redefine the function and provide the function body. The
functions include assert and memory allocation functions such as malloc, calloc and
alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause
These functions have special meaning for the Polyspace analysis, so you are not allowed
to redefine them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if
memory allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution
Unless you particularly want your own redefinitions to be used, ignore the warning. The
analysis results are based on Polyspace implementations of the standard library function,
which follow the original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined
function behaves the same as the original function, rename the functions. You can rename
the function only for the purposes of analysis using the option Preprocessor
definitions (-D). For instance, to rename a function malloc to my_malloc, use
malloc=my_malloc for the option argument.

 Errors from Assertion or Memory Allocation Functions

11-81

Error from Special Characters

Issue
Your file or folder names contain extended ASCII characters, such as accented letters or
Kanji characters. You face file access errors during analysis. Error messages you might
see include:

• No source files to analyze
• Control character not valid
• Cannot create directory Folder_Name

Cause
Polyspace does not fully support these characters. If you use extended ASCII in your file
or folder names, your Polyspace analysis may fail due to file access errors.

Workaround
Change the unsupported ASCII characters to standard US-ASCII characters.

11 Troubleshooting in Polyspace Code Prover Server

11-82

Error or Slow Runs from Disk Defragmentation and Anti-
virus Software

Issue
In some cases, anti-virus software checks can noticeably slow down a Polyspace analysis.
This reduction occurs because the software checks the temporary files produced by the
Polyspace analysis.

You see noticeably slow analysis for a simple project or the analysis stops with an error
message like the following:
Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),
 foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Possible Cause
A disk defragmentation tool or anti-virus software is running on your machine.

After starting an analysis, check the processes running and see if an anti-virus process is
causing large amount of CPU usage (and possibly memory usage).

Solution
Try:

 Error or Slow Runs from Disk Defragmentation and Anti-virus Software

11-83

• Stopping the disk defragmentation tool.
• Deactivating the anti-virus software. Or, configuring exception rules for the anti-virus

software to allow Polyspace to run without a failure.

For instance, you can try the following:

• Configure the anti-virus software to whitelist the Polyspace executables.

For instance, in Windows, with the anti-virus software Windows Defender, you can
add an exclusion for the Polyspace installation folder C:\Program Files
\Polyspace\R2019a, in particular, the .exe files in the subfolder polyspace
\bin and the .exe files starting with ps_ in the subfolder bin\win64.

• Configure the anti-virus software to exclude your temporary folder, for example,
C:\Temp, from the checking process.

11 Troubleshooting in Polyspace Code Prover Server

11-84

SQLite I/O Error

Issue
When you try to run Polyspace, you get this error message:

Cause
Polyspace uses an SQLite database for storing results. This error can appear when SQLite
databases are saved on NFS (Network File System) folders.

Solution
Check the folder where you save Polyspace results. For instance, if you run Polyspace at
the command line, check the option -results-dir.

If the folder is an NFS folder, use a local folder instead.

 SQLite I/O Error

11-85

License Error –4,0

Issue
When you try to run Polyspace, you get this error message:

License Error -4,0

Possible Cause: Another Polyspace Instance Running
You can open multiple instances of Polyspace, but you can only run one code analysis at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0 error.

Solution

Only run one analysis at a time, including any command-line or plugin analyses.

Possible Cause: Prior Polyspace Run in Simulink or MATLAB
Coder
If you run Polyspace on generated code in the Simulink user interface or in the MATLAB
Coder app, you can get a license error if you try to run a subsequent analysis in the
Polyspace user interface. You get the error even if the previous run is over.

Solution

Run the subsequent analysis using the method that you used before, that is, in the
Simulink user interface or MATLAB Coder app.

If you want to run the analysis in the Polyspace user interface, close Simulink or MATLAB
Coder and then rerun the analysis.

11 Troubleshooting in Polyspace Code Prover Server

11-86

